不可以。论文里面阐述的就是题目的要求,到时候答辩,老师问里面的数据和来源以及相关问题回答不出来是不可以的,所以还是要一致才有说服力。毕业论文中的数据必须真实的。一般情况下,答辩过程中老师不会让你演示数据的分析过程,但一般会问到你你的论文理论基础,数据是如何收集的(即通过哪些途径收集的),你的问卷设计,数据分析结果,得出结论等。
呵呵,改数据吧,一般很少有论文的数据是想要的结果
进行科研,少不了做实验。得到实验原始数据后,要进行分析处理,来判断所得结果是否具有统计学意义上的显著相关性,是否支持研究设想,然后对数据结果进行解释,最后得出结论。 无论是期刊论文还是学位论文,在引言或前言(Introduction)中提出本研究的目的(aim/purpose),和研究假设(hypothesis),完成一系列的实验后,在报告方法(Materials and Methods)一节中,要进行数据分析。 通过数据分析,发现得出的结论具有相关性,从而验证了你的研究设想,实现了你的研究目的。 但也有可能实验结果的相关性不显著,得出的结果和研究设想不一致,甚至相反。你的第一反应也许是不理会那些数据,甚至想到要剔除掉它们。这是错误的做法。 一个科研人员应具备科研素质,尊重科学,严谨治学。其实相关性不显著,就是你实验的科学结论,只不过不支持你的研究设想罢了。你的实验结果证明你的设想不成立,从而否定了这一假设,这本身就是一结论。 一般情况下,如得出实验结果相关性不显著时,作者还要分析一下其原因,如样本不够大、变量不易控制、人为因素等。 下面以一篇SCI文章为例,来看看如果处理“不完美”的数据。 ❶We met with mixed success in our objectives. ❷We had believed that our results would indicate that trust was best described as a concept with two distinct dimensions. ❸Instead, we found an overall trust dimension that best characterized the data. ❹At least two plausible reasons may explain this difference, each providing rich areas for further research. ❺In part, some of the inconsistency may exist because of cross cultural variations. ❻In addition, some dissimilarity in results may exist because of methodological differences. 第一句话直接指出了部分结果与设想不一样,第二句和第三句分别阐述了原来的设想和实际得到的实验结果。第四句写出有两个原因,第五、六句具体分析了两个原因。
上交论文后会给你结果是否显著1:实事求是法在结论部分坦诚,结论与预期不符,并分析为什么会造成这种结果:样本选择问题?数据收集问题?研究方法问题?还是单纯的预期不准确?进行了合理的分析之后,阐述实际的研究结果,不失为一种坦诚的、大度的、有效的方法。这种方法贵在实事求是,体现自己的态度:虽然我的学术水平确实一般,但是我的态度是端正的。老师一般不会难为这种学生的。2:鸵鸟法数据确实和预期不符,那么久摆在这里好了。反正答辩老师不会仔细看,他们不会发现这个问题的,看到就说不知道就是了。这种办法并不推荐,属于到最后没有时间修改的自暴自弃法。
如果回归结果中有1%或者5%的变量,其他的一些非核心的变量10%显著性水平在核心期刊里也是用的。调节变量如果变量Y与变量X的关系是变量M的函数,称M为调节变量。就是说Y与X的关系受到第三个变量M的影响。调节变量可以是定性的(如性别、种族、学校类型等),也可以是定量的(如年龄、受教育年限、刺激次数等),它影响因变量和自变量之间关系的方向(正或负)和强弱。中介变量( mediator) 是一个重要的统计概念,如果自变量X通过某一变量M对因变量Y产生一定影响,则称M为X和Y的中介变量。研究中介作用的目的是在已知X和Y关系的基础上,探索产生这个关系的内部作用机制。
因为本科论文加入实证分析则可以体现论文写作过程中付出的工作量,使论文可较易通过,而硕士论文可以根据兴趣进行选择实证分析和理论研究。实证分析是指基于事实、数据和经验,通过统计学和计量经济学等方法对某个经济、社会或行为现象进行研究和分析的一种方法。实证分析以数据为基础,通过搜集和分析数据来推断某个变量与另一个变量之间的关系。
不可以。论文里面阐述的就是题目的要求,到时候答辩,老师问里面的数据和来源以及相关问题回答不出来是不可以的,所以还是要一致才有说服力。毕业论文中的数据必须真实的。一般情况下,答辩过程中老师不会让你演示数据的分析过程,但一般会问到你你的论文理论基础,数据是如何收集的(即通过哪些途径收集的),你的问卷设计,数据分析结果,得出结论等。
您是想问硕士论文不显著改成显著了可以吗?硕士论文不显著改成显著了不可以,属于数据造假。是学术不端行为,会拖累导师。硕士论文不显著原因:数据收集不准确、预期结论存在一定错误都有可以造成结果与预期不符。
上交论文后会给你结果是否显著1:实事求是法在结论部分坦诚,结论与预期不符,并分析为什么会造成这种结果:样本选择问题?数据收集问题?研究方法问题?还是单纯的预期不准确?进行了合理的分析之后,阐述实际的研究结果,不失为一种坦诚的、大度的、有效的方法。这种方法贵在实事求是,体现自己的态度:虽然我的学术水平确实一般,但是我的态度是端正的。老师一般不会难为这种学生的。2:鸵鸟法数据确实和预期不符,那么久摆在这里好了。反正答辩老师不会仔细看,他们不会发现这个问题的,看到就说不知道就是了。这种办法并不推荐,属于到最后没有时间修改的自暴自弃法。
不可以。论文里面阐述的就是题目的要求,到时候答辩,老师问里面的数据和来源以及相关问题回答不出来是不可以的,所以还是要一致才有说服力。毕业论文中的数据必须真实的。一般情况下,答辩过程中老师不会让你演示数据的分析过程,但一般会问到你你的论文理论基础,数据是如何收集的(即通过哪些途径收集的),你的问卷设计,数据分析结果,得出结论等。
spss里的pearson相关分析的作用就是单纯考量变量两两之间的关系,虽然你可以在分析时一次放入多个变量,但出来的结果都是两个变量的简单的相关,也就是不在求两变量相关时考虑其他的控制变量。然而回归不同,回归的结果是综合所有进入回归方程的自变量对因变量的结果而成的,也就是说,在回归当中你所看到的相关,是在控制了其他进入回归方程的变量之后的。因此,普通相关与回归之中的回归系数会有比较大的差别。举个例子,比如你考查变量a,b,c之间的关系,如果你使用一般的相关,那么其结果呈现的是a和b的简单相关,b和c的简单相关,a和c的简单相关,每一个相关都只涉及到两个变量,而与第三个变量无关,但如果是回归,回归里a和b的相关是在减去c变量的效应之后的,b和c的相关是在减去a的效应后的,a和c的相关是减去b的效应后的。计算方法不同,得出的结果就不同。所以相关性分析时两变量关系不显著,回归分析却显著了这很正常。出现任何形式的不同都不奇怪
临近毕业的小伙伴,是不是经常遇到这样令人崩溃的时候,好不容易求爹爹告奶奶的收集了无比珍贵的数据。正准备大干一场,导入数据,建好模型,AMOS却出现各种各样报错。 话不多说,直接上干货! 1 检查数据里面的缺失值,如有缺失值可以先填补,或者删除,或者对缺失值进行其他处理。 在view下面的analysis properties勾选estimate means and intercepts,需要注意的是,勾选之后无法输出RMR、 GFI、AGFI、PGFI指标。 2 做二阶的时候,画好图了运行不出来 双击箭头,parameters--regression weight—输入1 3 造成此种错误的原因是数据文件有一个变量名也为F1,将AMOS里面的F1重新命名,或者将spss的F1变量重命名再运行。 注意潜变量的名字不要和spss里面的变量名重复,否则就会出现此错误。 4 在AMOS里面,只要是因变量,也就是只要有箭头指向的变量,都需要加上残差。 正确模型 5 A1在数据文件里面没有对应的变量,需要检查模型图中的观测变量是否为数据文件里面对应的变量。 6 出现这个错误,大多数是由于数据未正确使用或者数据质量太差导致的,请再次检查数据是否正确使用。 7 这种情况需要具体问题具体分析,以下列举两种情况 某变量只有一个观测变量,做成了潜变量,换为显变量,也就是椭圆,改为方框。 某个潜变量的parameter没有固定为1,或者将某个潜变量的方差固定为1。 8 检查数据有没有缺失值 将数据文件存为spss格式的再导入AMOS运行 9 计算SRMR时常出现的错误,重新打开AMOS,在运行之前点击plugins-standardized RMR。多次运行不要关掉结果框。 10 检查数据文件里面是否将数据类型设为“字符串”,将数据类型改为“数字“再重新导入运行。 END
不知道您使用的Amos模型是潜变量模型还是路径模型,据我所知,路径模型的原理和SPSS一样,结果非常接近,但潜变量模型则不一定了。如果论文已经说明用Amos了,那么Amos没能通过,就不能说退而求其次,使用SPSS,因为Amos作为更为全面严谨的方法已经否决了研究假设,如果还用不严谨的方法去检验假设,显然说不通。