欢迎来到学术参考网
当前位置:论文百科> 正文

数学史论文

发布时间:2023-12-12 02:17:04

数学史与数学文化论文

我可以写,私信

哦,这个

浅谈数学文化中的和合思想和合是我国传统文化的一个重要概念。“和”是平和、和谐、祥和、协调的意思。“合”是合作、对称、结合、统一的意思。和合思想认为,整个物质世界是一个和谐的整体,宇宙、自然、社会、精神各元素都处在一个和谐的优化结构中。而数学文化系统就是一个完美的和谐优化结构。数学文化中的数学发展史、数学哲学思想、数学方法、数学美育等重要内容蕴含着丰富的和合思想。其具体体现是整体系统性、平衡稳定性、有序对称性。一、整体系统性数学公理系统的相容性数学的公理化系统具有相容性、独立性和完备性。在这三项基本要求中,最主要的是相容性。相容性就是不矛盾性或和谐性,是指各公理不能互相抵触,它们推导的真命题也不能互相矛盾,公理系统的相容性是数学系统和谐的基础,也是基本要求。除了数学各分支自身要形成相容的公理系统之外,数学还要求各分支之间互相协调,不能互相抵触。有的系统之间,还形成密切的同构关系,在不同的数学系统之间,相容性是一致的。例如欧氏几何与非欧几何(罗式几何、黎曼几何)中平行公理是互否的命题,可在欧氏几何中构造非欧几何的模型,所以可以这样说只要欧氏几何无矛盾,那么非欧几何也是无矛盾的。数学运算系统的完整性数学的运算法则、运算公式、运算结论都是完整的、准确的。特别是数学的运算语言,它把文字语言、符号语言、图像语言完全融合到一个统一体中,互相印证、互相诠释、互相转化,达到了天衣无缝的完美。当扩充数系时,要建立新的理论和运算拓广原有运算和关系时,要尽量保持原有的运算、关系的一致性,如有不一致,必须作一规定,使新系统与原有系统和谐。数学推理系统的严密性在我们日常的数学活动中,常常用到反证法,在这种方法中,往往不仅要用到系统的公理和定理,而且要用到其他分支的知识。在整个推理过程中要和谐。例如古希腊三大著名问题之一化圆为方,即作一个与给定圆面积相等的正方形。要证明用圆规和直尺不能作出等面积的正方形就需要用到数“=”的超越性。在数学上的等式、解析式中出现“=”是和谐的体现。二、平衡稳定性“和合思想”认为天地自然万物处于平衡、和谐、有序的状态。各个事物、要素互依、互涵、互补,处于全面的、立体的相互作用的过程之中。而数学的平衡稳定性很好地体现了和合思想。数学发展的平衡稳定数学科学与其它学科相比,一个重要的特点就是历史的累积性、发展的平衡稳定性。也就是说重大的数学理论总是在继承和发展原有理论的基础上建立起来的,他们不仅不会推翻原有的理论,而且总是包容原有的理论。比如天文学的“地心说”被“日心说”所代替,物理学中关于光的“粒子说”被“波动说”代替,化学中的“燃素说”被“氧化说”代替等等,而数学从来没有发生过这样的情况。这正如一位数学史家H?汉科尔所说:“在大多数学科里,一代人的建筑为下一代人所拆毁,一个人的创造被另一个人所破坏,唯独数学,每一代人都在古老的大厦上添加一层楼”。数学的这一平衡稳定性,正是数学学科能不断焕发出无限活力和强大生命力根源。数学学习过程的平衡稳定人们对知识的学习过程都含有一定的认知结构。而学生学习数学知识的过程不外乎“同化—顺应—平衡”这样一个相对稳定的过程。同化就是把新的知识纳入已有的认知结构,使原有的知识体系不断得到充实丰富。顺应就是新的知识不能纳入原有的认知结构,就要对原有认知结构进行改造和提高,从而建立新的认知结构。平衡就是同化和顺应后,都有一个巩固阶段,在这一阶段对知识的理解和内化是平衡稳定的。人们对数学知识的学习正式在“同化—顺应—平衡”这样一个循环往复的过程中发展的。数学方法的平衡稳定数学方法是认识数学客体过程中某种有规律的程序和手段,使理论用于实践的中介,各种方法都和谐地存在在数学这个共同体中。比如常用的数学思维方法:观察、分析、综合、抽象、猜想、类比、归纳、演绎;还有常用的数学解题方法:比较方法、结构方法、模型方法、构造方法、化归方法、映射反演法、几何变换法、公理化方法等。这些方法,无论是在初等数学中,还是在高等数学中;无论是在几何学中,还是在代数学中,都在广泛的运用,始终处于平衡稳定状态中,不会因时间、空间、以及学科的变化发生变异。几何变换思想和方法,就是用运动和变化的观点去研究几何对象及其相互关系,探讨图形运动过程中不变的关系、不变量和变化关系、变化量,从中找出规律。在解题过程中,对图形有关部分进行变换,化不规则为规则,化一般为特殊,化不利条件为有利条件。三、有序对称性“凡物必有合”,“合”就是对称、结合、统一。整个世界不仅和谐合理,而且阴阳和合的对称。数学的有序对称美在初等数学中研究的对称性,可以描述的是一个图形、一个式子各个部分的关系,也可以描述两个图形、式子的关系。图形、式子的变换显示着数学中的对称美。图形对称可称为狭义对称,例如中心对称图形、轴对称图形、旋转对称图形是图形位置的一种对称。显示一种对称的美。在许多概念中和方法、命题、公式、法则中也存在对称性,也可称为一种对称。在数学中,许多概念都是一正一反,相辅相成,成对出现的。例如数学运算中加与减、乘与除、乘方与开方、微分与积分等,都可认为是一阴一阳的对称;减一个负数可变成加一个正数,除可以变成乘的运算,所以说它们之间又是统一有序的。在二元运算中通过交换律、结合律、分配律来反映其对称性。数学解题过程的有序结构从文化的角度审视数学解题过程它是数学策略、数学逻辑、数学方法、数学知识、数学技能与程式化的有机结合,是一个有序结构的统一体。比如解方程过程的基本步骤是:去分母、去括号、移项合并、两边同除以未知数的系数。这是一个和谐的有序结构。破坏了这个有序结构,就会发生解题障碍。从思维过程看,它是“观察———联想———转化”这样一个有序过程。观察是联想的基础,在观察中认识所给题目的特征;联想是转化的桥梁,在联想中寻找解题途径;转化是解题的手段,在转化中确定解题方案,从而最终解决问题。数学无论是从整体和局部,形式和内容,还是结果和过程都体现着和合思想的精神和内涵。我们用“和合思想”重新认识数学,发挥数学文化在教学中的教育功能,就能有效地培养学生科学素养和文化素养。参考文献:[1]齐民友数学文化[M]长沙:湖南教育出版社,[2]张维忠数学文化与数学课程[M]上海:上海教育出版社,[3]郑毓信数学文化学[M]成都:四川教育出版社,[4]李文林数学史教程[M]高教出版社

数学文化 人类共同的精神财富——数学,数学是人类智慧的结晶,它表达了人类思维中生动活泼的意念,表达了人类对客观世界深入细致的思考,以及人类追求完美和谐的愿望。 早在古希腊时代,哲学家柏拉图把数学看作是文化的最高理想。他说:“几何学可以将灵魂引向真理,并且创造出理性精神”。他认为学习数学不只是为了求真,也是为了求善、求美。他认为人通过研究几何同时也不断地塑造自己,使自己成为更高尚、更丰富、也更有力量的人。既人们在认识宇宙同时,也认识人类自己。在这个认识过程中,数学起着独特的作用。现在它几乎是任何科学都不可缺少的,它是现代科学技术的语言和工具,它的成果为众多学科所共识,积极推动着这些学科理论的建立和深化,它的思维方式和方法渗透到各学科,为这些学科的发展增添了活力。数学追求一种完全确定、完全可靠的知识。数学的对象必须是明确无误的概念,作为以推理为出发点的命题必须明确、清晰,推理过程的每一步骤都必须明确可靠、容不得半点的含糊,整个认识过程必须前后一贯而不容许自相矛盾。当然,任何一个法律文件、一篇有说服力的学术文章也必须概念清晰、逻辑严谨,但是数学对知识可靠性的要求更高、更明确。正因为如此,数学方法成为人们一种典范的认识方法,帮助人们正确地、客观地认识宇宙和人类自己。几千年来,人类的思想发生了巨大变化,人类的知识在不断地增长。而在由历史积累而形成的人类知识文化宝藏中,数学思想和方法却一直延续发展了几千年,表现出了强大的生命力。数学不断地追求最简单、最深层次这是认识的根本。用简洁的数学公式来表示复杂的事物、理解变化的客观规律。在科学技术领域内,人们现在己经能习惯地用非常简洁的数学公式来表示牛顿定律,以此来描述物体多种多样的运动,解释各种现象,同时借助于数学探求事物的机理,预测事物未来的发展变化,探求超出人类感官所及的宇宙的根本。人们借助计算机通过建立数学模型进行数学计算,在数学思想方法的启发和帮助下,解决各式各样的问题。人们在认识客观世界的探索中越来越相信,世界的合理性可以用数学来描述。数学不仅研究客观世界的数量关系和空间形式,而且也研究它自己。数学史中出现过的一个又一个悖论,记录了数学在研究自身的过程中所经历的一次又一次的危机,危机似乎动摇了数学的基础,而数学正是在不断严格地审视自己、不断地克服自身一个又一个矛盾的过程中夯实了自己的基础,使之变得更为扎实、牢靠。一些公理化体系就是数学对自己的基础出现多次“危机”后深思熟虑的结果。在探讨数学自身的过程中,也形成了像数理逻辑这样的数学新分支,推动了数学自身的发展。数学发展的历史正是体现了人类追求真理而不断探索的精神。数学的基础是逻辑和直觉、分析和推理、共性和个性,这种思维方式是数学外在的表现。而实质上也和其他文化领域一样,其自身的发展受到不同的时代精神、不同的思维方式的影响。反过来它也影响着人的精神和思维,影响一个民族文化进步。解析几何和微积分的创立,使变量成为数学的研究对象。数学思想、内容、方法上的革新,使数学的面貌焕然一新。而数学研究运动、变化的思想和方法,以及数学所取得的进展,对打破科学研究中形而上学的枷锁,把辩证法引入到科学的思维中,起到了推波助澜的作用。今天,恐怕没有一个有文化的人不懂得“增长速度”,“变化率”的含义,人们己经习惯从运动和变化的观点来研究事物。数学促进了几乎所有学科的发展,直接或间接地影响了每一个有文化的人的思维。影响人类的精神生活,提高和丰富了人类的整个精神文明水平。(2)数学对人的文化素养影响面对飞跃发展的科学技术,人必须具备必要的数学知识和技能,以训练心智、陶冶情操,更好的理解周围的世界,从而更客观的认识人类社会。例如“今年前六个月的居民存款比去年同期增速下降1个百分点。”“今天降水概率是50%”。“信息高速公路”、“数字信息”等他们的含义都是什么?数学对人的文化素质的影响,至少表现在如下几个方面:有利于培养严谨的思维方式。尽管大多数人将来不会成为数学家,但是条理性、逻辑性作为一种文化素质对人们将来从事任何一种职业都是需要的。同时,数学思维能力的培养对人的智力发展起着关键的作用。如圆是一个完美的图形,可用方程来表示,我们可以从这个方程中找出圆的所有美妙的性质,进一步还可以用方程来表示球,那么我们为什么不考虑下列方程以及。仅仅靠类比就使我们从三维空间进入了高维空间,从有形进入了无形,从现实进入了虚拟世界。有利于培养人的创新精神。数学是人类理性文明高度发展的结晶,又是人类创新的锐利工具。无论数学知识的应用或是数学知识的发展,都需要研究新问题,根据实际情况做出恰如其分的分析,并由此找到解决问题的途径。这就体现出人的巨大创造力。有利于培养科学的审美观。人对美的理解各不相同,但总之美和完善、完美、和谐、秩序……等相联系。而数学本身体现出的简洁美(抽象美、符号美、统一美等)、和谐美(对称美、形式美等)、奇异一,数学文化的存在价值在即将公布的高中数学课程标准中,数学文化是一个单独的板块,给予了特别的重视。许多老师会问为什么要这样做?一个重要的原因是,20世纪初年的数学曾经存在着脱离社会文化的孤立主义倾向,并一直影响到今天的中国。数学的过度形式化,使人错误地感到数学只是少数天才脑子里想象出来的“自由创造物”,数学的发展无须社会的推动,其真理性无须实践的检验,当然,数学的进步也无须人类文化的哺育。于是,西方的数学界有“经验主义的复兴”。怀特(White)的数学文化论力图把数学回归到文化层面。克莱因(Kline)的《古今数学思想》、《西方文化中的数学》、《数学:确定性的丧失》相继问世,力图营造数学文化的人文色彩。国内最早注意数学文化的学者是北京大学的教授孙小礼,她和邓东皋等合编的《数学与文化》,汇集了一些数学名家的有关论述,也记录了从自然辩证法研究的角度对数学文化的思考。稍后出版的有齐民友的《数学与文化》,主要从非欧几何产生的历史阐述数学的文化价值,特别指出了数学思维的文化意义。郑毓信等出版的专著《数学文化学》,特点是用社会建构主义的哲学观,强调“数学共同体”产生的文化效应。以上的著作以及许多的论文,都力图把数学从单纯的逻辑演绎推理的圈子中解放出来,重点是分析数学文明史,充分揭示数学的文化内涵,肯定数学作为文化存在的价值。二,数学:一种思想方法数学是研究量的科学。它研究客观对象量的变化、关系等,并在提炼量的规律性的基础上形成各种有关量的推导和演算的方法。数学的思想方法体现着它作为一般方法论的特征和性质,是物质世界质与量的统一、内容与形式的统一的最有效的表现方式。这些表现方式主要有:提供数量分析和计算工具;提供推理工具;建立数学模型。任何一种数学方法的具体运用,首先必须将研究对象数量化,进行数量分析、测量和计算。毛泽东同志曾指出:“对情况和问题一定要注意到它们的数量方面,要有基本的数量的分析。任何质量都表现为一定的数量,没有数量也就没有质量。”(注:《毛泽东选集》第4卷第1443页,人民出版社1990年版。)例如太阳系第八大行星——海王星的发现,就是由亚当斯(J C Adams)和勒维烈(U J Leverrier)运用万有引力定律,通过复杂的数量分析和计算,在尚未观察到海王星的情况下推理并预见其存在的。数学作为推理工具的作用是巨大的。特别是对由于技术条件限制暂时难以观测的感性经验以外的客观世界,推理更有其独到的功效,例如正电子的预言,就是由英国理论物理学家狄拉克根据逻辑推理而得出的。后来由宇宙射线观测实验证实了这一论断。值得指出的是,数学模型方法作为对某种事物或现象中所包含的数量关系和空间形式所进行的数学概括、描述和抽象的基本方法,已经成为应用数学最本质的思想方法之一。模型这一概念在数学上已变得如此重要,以致于许多数学家都把数学看成是“关于模型的科学”。怀特海(A N Whitehead )认为:“模式具有重要性的看法和文明一样古老……社会组织的结合力也依赖于行为模式的保持;文明的进步也侥幸地依赖于这些行为模式的变更。”(注:林夏水主编《数学哲学译文集》第350页,知识出版社1986年版。)并进一步指出:“数学对于理解模式和分析模式之间的关系,是最强有力的技术。”(注:林夏水主编《数学哲学译文集》第350页,知识出版社1986年版。)物理学家博尔茨曼(LE Boltzmann)认为:“模型,无论是物理的还是数学的,无论是几何的还是统计的,已经成为科学以思维能力理解客体和用语言描述客体的工具。”这一观点目前不仅流行于自然科学界,还遍布于社会科学界。为自然界和人类社会的各种现象或事物建立模型,是把握并预测自然界与人类社会变化与发展规律的必然趋势。在欧洲,在人文科学和社会科学中称为结构主义的运动,雄辩地论证了所有各种范围的人类行为与意识都有形式的数学结构为基础。在美国,社会科学自夸有更坚实、定量的东西,这通常也是用数学模型来表示的。从模型的观点看,数学已经突破了量的确定性这一较狭义的范畴而获得了更广泛的意义。既然数学的研究对象已经不再局限于“量”而扩展为更广义的“模型”,那么,数学概念的本质也在发生嬗变。数学正成为一个动态的、变化的、泛化了的概念体系,其涵盖的科学对象也必然随之增加。数学在社会科学中的模型建构大都以结构分析为目标,即在高度简化与理想化的框架中去理解社会行为机制。在某些框架下,利用科学去预测与控制一个社会系统的一切变量的更高层次的目标已经实现。数学的模型方法把数学的思想方法功能转化成科学研究的实际力量。数学中有一个分支叫应用数学,主要就是研究如何从实际问题中提炼数学模型。这是一个对研究对象进行具体分析、科学抽象和做出判断与预见的过程。如对客观事物的必然现象,人们用确定性模型去描述,而对或然现象,人们建立了随机性模型。模糊数学被用于刻画弗晰现象。而各种突变现象,如地震、洪灾等,则可以由突变理论给出数学模型。三,数学:理性的艺术通常人们认为,艺术与数学是人类所创造的风格与本质都迥然不同的两类文化产品。两者一个处于高度理性化的巅峰,另一个居于情感世界的中心;一个是科学(自然科学)的典范,另一个是美学构筑的杰作。然而,在种种表面无关甚至完全不同的现象背后,隐匿着艺术与数学极其丰富的普遍意义。数学与艺术确实有许多相通和共同之处,例如数学和艺术,特别是音乐中的五线谱,绘画中的线条结构等,都是用抽象的符号语言来表达内容。难怪有人说,数学是理性的音乐,音乐是感性的数学。事实上,由于数学(特别是现代数学)的研究对象在很大程度上可以被看成“思维的自由想象和创造”,因此,美学的因素在数学的研究中占有特别重要的地位,以致在一定程度上数学可被看成一种艺术。对此,我们还可做出如下进一步的分析。艺术与数学都是描绘世界图式的有力工具。艺术与数学作为人类文明发展的产物,是人类认识世界的一种有力手段。在艺术创造与数学创造中凝聚着人类美好的理想和实现这种理想的孜孜追求。尽管艺术家与数学家使用着不同的工具,有着不同的方式,但他们工作的基本的目的都是为了描绘一幅尽可能简化的“世界图式”。艺术实践与数学活动的动机、过程、方法与结果,都是在其自身价值的弘扬中,不断地实现着对世界图式的有力刻画。这种价值就是在充分、完全地理解现实世界的基础上,审美地掌握世界。艺术与数学都是通用的理想化的世界语言。艺术与数学在描绘世界图式的过程中,还同时发展并完善着自身的表现形式,这种表现形式最基本的载体便是艺术与数学各自独特的语言体系。其共同特征有:(1)跨文化性。艺术与数学所表达的是一种带有普遍意义的人类共同的心声,因而它们可以超越时间和地域界限,实现不同文化群体之间的广泛传播和交流。(2)整体性。艺术语言的整体性来自于其艺术表现的普遍性和广泛性;数学语言的整体性来自于数学统一的符号体系、各个分支之间的有力联系、共同的逻辑规则和约定俗成的阐述方式。(3 )简约性。它首先表现为很高的抽象程度,其次是凝冻与浓缩。(4 )象征性。艺术与数学语言各自的象征性可以诱发某种强烈的情感体验,唤起某种美的感受,而意义则在于把注意力引向思维,升迁为理念,成为表现人类内心意图的方式。(5)形式化。在艺术与数学各自进行的代码与信息的意义交换中,其共同的特征就是达到了实体与形式的分隔。这样提炼出来的形式可以进行形式化处理。艺术与数学具有普适的精神价值。有人把精神价值划分为知识价值、道德价值和审美价值三种。艺术与数学同时具备这三种价值,这一事实赋予了艺术与数学精神价值以普适性。概括起来,其共同的特点有:(1)自律性。数学价值的自律性是与数学价值的客观性相联系的;艺术的价值也是不能由民主选举和个人好恶来衡量的。艺术与数学的价值基本上是在自身框架内被鉴别、鉴赏和评价的。(2)超越性。它们可以超越时空,显示出永恒。在艺术与数学的价值超越过程中,现实被扩张、被延伸。人被重新塑造,赋予理想。艺术与数学的超越性还表现为超前的价值。(3)非功利性。艺术与数学的非功利性是其价值判断有别于其他种类文化与科学的显著特征之一。(4)多样化、物化与泛化。在现代技术与商业化的冲击下,艺术与数学的价值也开始发生嬗变,出现了各自价值在许多领域内的散射、渗透、应用、交叉等现象。在人类思维的全谱系中,艺术思维和数学思维的主要特征决定了其主导思维各居于谱系的两端。但两种思维又有很多交叉、重叠和复合。特别是真正的艺术品和数学创造,一般都不是某种单一思维形式的产物,而是多种思维形式综合作用的结果。人类思维之翼在艺术思维与数学思维形成的巨大张力之间展开了无穷的翱翔,并在人类思维的自然延拓和形式构造中被编织得浑然一体,呈现出整体多样性的统一。人类思维谱系不是线性的,而是主体的、网络式的、多层多维的复合体。当我们想要探索人类思维的奥秘时,艺术思维与数学思维能够提供最典型的范本。其中能够找到包括人类原始思维直至人工智能这样高级思维在内的全部思维素材四,数学韵味——数学的美说到数学美,人们自然会联想到令人心驰神往的优美而和谐的黄金分割;雄伟壮丽的科学宫殿的欧几里得平面几何;数学皇冠上的明珠“哥德巴赫猜想”……数学美可以分为形式美和内在美。数学中的公式、定理、图形等所呈现出来的简单、整齐以及对称的美是形式美的体现。数学中有字符美和构图美还有对称美,数学中的对称美反映的是自然界的和谐性,在几何形体中,最典型的就是轴对称图形。数学中的简洁美,数学具有形式简洁、有序、规整和高度统一的特点,许多纷繁复杂的现象,可以归纳为简单的数学公式。数学的内在美有数学的和谐美,数量的和谐,空间的协调是构成数学美的重要因素。数学中的严谨美,严谨美是数学独特的内在美,我们通常用“滴水不漏”来形容数学。它表现在数学推理的严密,数学定义准确揭示概念的本质属性,数学结构系统的协调完备等等。总之,数学美的魅力是诱人的,数学美的力量是巨大的,数学美的思想是神奇的,数学是一个五彩缤纷的美的世界。美(有限美、神秘美等)会给学生以美的熏陶。数学所揭示的规律会加深学生对美的理解,而学习数学的过程也会使学生体验数学作为人类智慧的结晶所洋溢出的精神美。数学精神是一种理性精神,对完善人的精神品格有着不可估量的作用,主要体现在严谨求实、理智自率、直着求真、开拓创新等方面,通过解题实践既巩固了知识,培养了能力,同时也发展了坚持公正、终于科学、一丝不苟、不懈探索的优良品质,这都是造就人不断追求进取的品质所必备的前提。

数学文化与数学史论文

网上找可以么

数学作为一种文化现象,早已是人们的常识历史地看,古希腊和文艺复兴时期的文化名人,往往本身就是数学家进入21世纪之后,数学文化的研究更加深入一个重要的标志是数学文化走进中小学课堂,渗入实际数学教学,努力使学生在学习数学过程中真正受到文化感染,产生文化共鸣,体会数学的文化品位,体察社会文化和数学文化之间的互动中国在春秋战国时期也有百家争鸣的学术风气,但是没有实行古希腊统治者之间的民主政治,而是实行君王统治制度春秋战国时期,也是知识分子自由表达见解的黄金年代当时的思想家和数学家,主要目标是帮助君王统治臣民,管理国家因此,中国的古代数学,多半以"管理数学"的形式出现,目的是为了丈量田亩,兴修水利,分配劳力,计算税收,运输粮食等国家管理的实用目标理性探讨在这里退居其次因此,从文化意义上看,中国数学可以说是"管理数学"和"木匠数学",存在的形式则是官方的文书古希腊的文化时尚,是追求精神上享受,以获得对大自然的理解为最高目标因此,"对顶角相等"这样的命题,在《几何原本》里列入命题15,借助公理3(等量减等量,其差相等)给予证明在中国的数学文化里,不可能给这样的直观命题留下位置 同样,中国数学强调实用的管理数学,却在算法上得到了长足的发展负数的运用,解方程的开根法,以及杨辉(贾宪)三角,祖冲之的圆周率计算,天元术那样的精致计算课题,也只能在中国诞生,而为古希腊文明所轻视 我们应当充分重视中国传统数学中的实用与算法的传统,同时又必须吸收人类一切有益的数学文化创造,包括古希腊的文化传统当进入21世纪的时候,我们作为地球村的村民,一定要溶入世界数学文化,将民族性和世界性有机地结合起来揭示数学文化内涵,走出数学孤立主义的阴影。数学的内涵,包括用数学的观点观察现实,构造数学模型,学习数学的语言,图表,符号表示,进行数学交流通过理性思维,培养严谨素质,追求创新精神,欣赏数学之美半个多世纪以前,著名数学家柯朗在名著《数学是什么》的序言中这样写道:"今天,数学教育的传统地位陷入严重的危机数学教学有时竟变成一种空洞的解题训练数学研究已出现一种过分专门化和过于强调抽象的趋势,而忽视了数学的应用以及与其他领域的联系教师学生和一般受过教育的人都要求有一个建设性的改造,其目的是要真正理解数学是一个有机整体,是科学思考与行动的基础" 2002年8月20日,丘成桐接受《东方时空》的采访时说:"我把《史记》当作歌剧来欣赏","由于我重视历史,而历史是宏观的,所以我在看数学问题时常常采取宏观的观点,和别人的看法不一样" 这是一位数学大家的数学文化阐述 《文汇报》2002年8月21日摘要刊出钱伟长的文章《哥丁根学派的追求》,其中提到:"这使我明白了:数学本身很美,然而不要被它迷了路应用数学的任务是解决实际问题,不是去完善许多数学方法,我们是以解决实际问题为己任的从这一观点上讲,我们应该是解决实际问题的优秀'屠夫',而不是制刀的'刀匠',更不是那种一辈子欣赏自己的刀多么锋利而不去解决实际问题的刀匠"这是一个力学家的数学文化观和所有文化现象一样,数学文化直接支配着人们的行动孤立主义的数学文化,一方面拒人于千里之外,使人望数学而生畏;另一方面,又孤芳自赏,自言自语,令人把数学家当成"怪人"学校里的数学,原本是青少年喜爱的学科,却成为过滤的"筛子",打人的"棒子"优秀的数学文化,会是美丽动人的数学王后,得心应手的仆人,聪明伶俐的宠物伴随着先进的数学文化,数学教学会变得生气勃勃,有血有肉,光彩照人多侧面地开展数学文化研究谈到数学文化,往往会联想到数学史确实,宏观地观察数学,从历史上考察数学的进步,确实是揭示数学文化层面的重要途径但是,除了这种宏观的历史考察之外,还应该有微观的一面,即从具体的数学概念,数学方法,数学思想中揭示数学的文化底蕴以下将阐述一些新视角,力求多侧面地展现数学文化 数学和文学数学和文学的思考方法往往是相通的举例来说,中学课程里有"对称",文学中则有"对仗"对称是一种变换,变过去了却有些性质保持不变轴对称,即是依对称轴对折,图形的形状和大小都保持不变那么对仗是什么 无非是上联变成下联,但是字词句的某些特性不变王维诗云:"明月松间照,清泉石上流"这里,明月对清泉,都是自然景物,没有变形容词"明"对"清",名词"月"对"泉",词性不变其余各词均如此变化中的不变性质,在文化中,文学中,数学中,都广泛存在着数学中的"对偶理论",拓扑学的变与不变,都是这种思想的体现文学意境也有和数学观念相通的地方徐利治先生早就指出:"孤帆远影碧空尽",正是极限概念的意境欧氏几何和中国古代的时空观初唐诗人陈子昂有句云:"前不见古人,后不见来者,念天地之悠悠,独怆然而涕下"这是时间和三维欧几里得空间的文学描述在陈子昂看来,时间是两头无限的,以他自己为原点,恰可比喻为一条直线天是平面,地是平面,人类生活在这悠远而空旷的时空里,不禁感慨万千数学正是把这种人生感受精确化,形式化诗人的想象可以补充我们的数学理解 数学与语言语言是文化的载体和外壳数学的一种文化表现形式,就是把数学溶入语言之中"不管三七二十一"涉及乘法口诀,"三下二除五就把它解决了"则是算盘口诀再如"万无一失",在中国语言里比喻"有绝对把握",但是,这句成语可以联系"小概率事件"进行思考"十万有一失"在航天器的零件中也是不允许的此外,"指数爆炸""直线上升"等等已经进入日常语言它们的含义可与事物的复杂性相联系(计算复杂性问题),正是所需要研究的"事业坐标""人生轨迹"也已经是人们耳熟能详的词语 数学的宏观和微观认识宏观和微观是从物理学借用过来的,后来变成一种常识性的名词以函数为例,初中和高中的函数概念有变量说和对应说之分,其实是宏观描述和微观刻画的区别初中的变量说,实际上是宏观观察,主要考察它的变化趋势和性态高中的对应则是微观的分析在分段函数的端点处,函数值在这一段,还是下一段,差一点都不行政治上有全局和局部,物理上有牛顿力学与量子力学,电影中有全景和细部,国画中有泼墨山水画和工笔花鸟画,其道理都是一样的是否要从这样的观点考察函数呢 数学和美学"1/2+1/3=2/5 "是不是和谐美 二次方程的求根公式美不美 这涉及到美学观三角函数课堂上应该提到音乐,立体几何课总得说说绘画,如何把立体的图形画在平面上欣赏艾舍尔的画,计算机画出的分形图,也是数学美的表现

(记得给俺分哦)数学在提出问题和解答问题方面,已经形成了一门特殊的科学。在数学的发展史上,有很多的例子可以说明,数学问题是数学发展的主要源泉。数学家门为了解答这些问题,要花费较大力量和时间。尽管还有一些问题仍然没有得到解答,然而在这个过程中,他们创立了不少的新概念、新理论、新方法,这些才是数学中最有价值的东西。 ◇公元前600年以前 ◇   据中国战国时尸佼著《尸子》记载:"古者,倕(注:传说为黄帝或尧时人)为规、矩、准、绳,使天下仿焉",这相当于在公元前2500年前,已有"圆、方、平、直"等形的概念。   公元前2100年左右,美索不达米亚人已有了乘法表,其中使用着六十进位制的算法。   公元前2000年左右,古埃及已有基于十进制的记数法、将乘法简化为加法的算术、分数计算法。并已有三角形及圆的面积、正方角锥体、锥台体积的度量法等。 中国殷代甲骨文卜辞记录已有十进制记数,最大数字是三万。   公元前约1950年,巴比伦人能解二个变数的一次和二次方程,已经知道"勾股定理" 。 ◇公元前600--1年◇     公元前六世纪,发展了初等几何学(古希腊 泰勒斯)。   约公元前六世纪,古希腊毕达哥拉斯学派认为数是万物的本原,宇宙的组织是数及其关系的和谐体系。证明了勾股定理,发现了无理数,引起了所谓第一次数学危机。   公元前六世纪,印度人求出√2=1.4142156。   公元前462年左右,意大利的埃利亚学派指出了在运动和变化中的各种矛盾,提出了飞矢不动等有关时间、空间和数的芝诺悖理(古希腊 巴门尼德、芝诺等)。   公元前五世纪,研究了以直线及圆弧形所围成的平面图形的面积,指出相似弓形的面积与其弦的平方成正比(古希腊丘斯的希波克拉底)。   公元前四世纪,把比例论推广到不可通约量上,发现了"穷竭法"(古希腊,欧多克斯)。   公元前四世纪,古希腊德谟克利特学派用"原子法"计算面积和体积,一个线段、一个面积或一个体积被设想为由很多不可分的"原子"所组成。   公元前四世纪,建立了亚里士多德学派,对数学、动物学等进行了综合的研究(古希腊,亚里士多德等)。   公元前四世纪末,提出圆锥曲线,得到了三次方程式的最古老的解法(古希腊,密内凯莫)。   公元前三世纪,《几何学原本》十三卷发表,把以前有的和他本人的发现系统化了,成为古希腊数学的代表作(古希腊,欧几里得)。   公元前三世纪,研究了曲线图和曲面体所围成的面积、体积;研究了抛物面、双曲面、椭圆面;讨论了圆柱、圆锥半球之关系;还研究了螺线(古希腊,阿基米德)。   公元前三世纪,筹算是当时中国的主要计算方法。   公元前三至前二世纪,发表了八本《圆锥曲线学》,是一部最早的关于椭圆、抛物线和双曲线的论著(古希腊 阿波罗尼)。   约公元前一世纪,中国的《周髀算经》发表。其中阐述了"盖天说"和四分历法,使用分数算法和开方法等。   公元前一世纪,《大戴礼》记载,中国古代有象征吉祥的河图洛书纵横图,即为"九宫算"这被认为是现代"组合数学"最古老的发现。 ◇1-400年◇     继西汉张苍、耿寿昌删补校订之后,50-100年,东汉时纂编成的《九章算术》,是中国古老的数学专著,收集了246个问题的解法。   一世纪左右,发表《球学》,其中包括球的几何学,并附有球面三角形的讨论(古希腊,梅内劳)。   一世纪左右,写了关于几何学、计算的和力学科目的百科全书。在其中的《度量论》中,以几何形式推算出三角形面积的"希隆公式"(古希腊,希隆)。   100年左右,古希腊的尼寇马克写了《算术引论》一书,此后算术开始成为独立学科。   150年左右,求出π=3.14166,提出透视投影法与球面上经纬度的讨论,这是古代坐标的示例(古希腊,托勒密)。   三世纪时,写成代数著作《算术》共十三卷,其中六卷保留至今,解出了许多定和不定方程式(古希腊,丢番都)。   三世纪至四世纪魏晋时期,《勾股圆方图注》中列出关于直角三角形三边之间关系的命题共21条(中国,赵爽)。   三世纪至四世纪魏晋时期,发明"割圆术",得π=3.1416(中国,刘徽)。   三世纪至四世纪魏晋时期,《海岛算经》中论述了有关测量和计算海岛的距离、高度的方法(中国 刘徽)。 四世纪时,几何学著作《数学集成》问世,是研究古希腊数学的手册(古希腊,帕普斯)。 ◇401-1000年◇   五世纪,算出了π的近似值到七位小数,比西方早一千多年(中国 祖冲之)。   五世纪,著书研究数学和天文学,其中讨论了一次不定方程式的解法、度量术和三角学等(印度,阿耶波多)。   六世纪中国六朝时,提出祖氏定律:若二立体等高处的截面积相等,则二者体积相等。西方直到十七世纪才发现同一定律,称为卡瓦列利原理(中国,祖暅)。   六世纪,隋代《皇极历法》内,已用"内插法"来计算日、月的正确位置(中国,刘焯)。   七世纪,研究了定方程和不定方程、四边形、圆周率、梯形和序列。给出了ax by=c (a,b,c,是整数)的第一个一般解(印度,婆罗摩笈多)。   七世纪,唐代的《缉古算经》中,解决了大规模土方工程中提出的三次方程求正根的问题(中国,王孝通)。   七世纪,唐代有《"十部算经"注释》。"十部算经"指:《周髀》、《九章算术》、《海岛算经》、《张邱建算经》、《五经算术》等(中国,李淳风等)。 727年,唐开元年间的《大衍历》中,建立了不等距的内插公式(中国,僧一行)。   九世纪,发表《印度计数算法》,使西欧熟悉了十进位制(阿拉伯,阿尔·花刺子模 )。 ◇1001-1500年◇   1086-1093年,宋朝的《梦溪笔谈》中提出"隙积术"和"会圆术",开始高阶等差级数的研究(中国,沈括)。   十一世纪,第一次解出x2n axn=b型方程的根(阿拉伯,阿尔·卡尔希)。   十一世纪,完成了一部系统研究三次方程的书《代数学》(阿拉伯,卡牙姆)。  十一世纪,解决了"海赛姆"问题,即要在圆的平面上两点作两条线相交于圆周上一点,并与在该点的法线成等 角(埃及,阿尔·海赛姆)。   十一世纪中叶,宋朝的《黄帝九章算术细草》中,创造了开任意高次幂的"增乘开方法",列出二项式定理系数表,这是现代"组合数学"的早期发现。后人所称的"杨辉三角"即指此法(中国,贾宪)。   十二世纪,《立剌瓦提》一书是东方算术和计算方面的重要著作(印度,拜斯迦罗)。   1202年,发表《计算之书》,把印度-阿拉伯记数法介绍到西方(意大利,费婆拿契 )。   1220年,发表《几何学实习》一书,介绍了许多阿拉伯资料中没有的示例(意大利,费婆拿契)。 1247年,宋朝的《数书九章》共十八卷,推广了"增乘开方法"。书中提出的联立一次同余式的解法,比西方早五百七十余年(中国,秦九韶)。 1248年,宋朝的《测圆海镜》十二卷,是第一部系统论述"天元术"的著作(中国,李治 )。   1261年,宋朝发表《详解九章算法》,用"垛积术"求出几类高阶等差级数之和(中国, 杨辉)。   1274年,宋朝发表《乘除通变本末》,叙述"九归"捷法,介绍了筹算乘除的各种运算法(中国,杨辉)。   1280年,元朝《授时历》用招差法编制日月的方位表(中国,王恂、郭守敬等)。   十四世纪中叶前,中国开始应用珠算盘。   1303年,元朝发表《四元玉鉴》三卷,把"天元术"推广为"四元术"(中国,朱世杰)。   1464年,在《论各种三角形》(1533年出版)中,系统地总结了三角学(德国,约·米勒)。   1494年,发表《算术集成》,反映了当时所知道的关于算术、代数和三角学的知识( 意大利,帕奇欧里)。◇1501-1600年◇   1545年,卡尔达诺在《大法》中发表了非尔洛求三次方程的一般代数解的公式(意大利 ,卡尔达诺、非尔洛)。   1550─1572年,出版《代数学》,其中引入了虚数,完全解决了三次方程的代数解问题(意大利,邦别利)。   1591年左右,在《美妙的代数》中出现了用字母表示数字系数的一般符号,推进了代数问题的一般讨论(德国,韦达)。

可以解决生活的实际问题。

数学史学术论文

_new_10708/感觉这个网站应该对你很有帮助进去自己看看吧

数学的发展史  世界数学发展史   数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的希腊语Μαθηματικ? mathematikós)意思是“学问的基础”,源于ματθημα(máthema)(“科学,知识,学问”)。   数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。 除了认知到如何去数实际物质的数量,史前的人类亦了解如何去数抽象物质的数量,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。   更进一步则需要写作或其他可记录数字的系统,如符木或于印加帝国内用来储存数据的奇普。历史上曾有过许多且分歧的记数系统。   从历史时代的一开始,数学内的主要原理是为了做税务和贸易等相关多计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。   到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。   数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。依据Mikhail B Sevryuk于美国数学会通报2006年1月的期刊中所说,“存在于数学评论数据库中论文和书籍的数量自1940年(数学评论的创刊年份)现已超过了一百九十万份,而且每年还增加超过七万五千份的细目。此一学海的绝大部分为新的数学定理及其证明。”就这些了!O(∩_∩)O~

中国数学史 中国数学史,就是研究中国数学发展规律的学科;中国数学史,既可以看作是中国历史上的数学;也可以看作是中国数学的发展历史。研究中国数学史,要研究中国历代的数学成果,也要研究中国历史上各种数学学术活动、数学思想、社会背景、以及一切有关记载;研究中国数学史的方法,计有考证法、分析法、议论法、演理法等,但在这些方法中,最重要的当推“考证法”。 一、何谓考证、何以需要考证 孟子说:“尽信书,不如无书”。美国历史学家Johnson 说:“在历史研究中,怀疑是智慧之始”。因为,“历史”主要是由记载形成的,而记载则是由历史上的事物组成的,可是,历史上的记载与历史上的事实未必一定相符合,往往记载与事实有一定差异。 例如,记得《小小说》记载这样一个故事:一天旁晚在伦敦海德公园的椅子上坐著一对衣著华贵的夫妇,突然走来一中年男子,为了吸烟,向这位丈夫借火;这丈夫不但未借给火,反而出言不逊,拿起手杖便把中年男子赶走了。事后,这丈夫逢人便说:那天他的夫人穿著非常华丽,还带有许多贵重首饰;谁知在那宁静的夜晚,突然来了一个歹徒,以借火为名,意欲抢劫,我便先下手为强,把他赶走了。而这位夫人则对人说:那天我打扮得特别漂亮,尤其在旁晚的灯光下,我想一定很迷人;可巧来了一位中年男子,以借火为名想多看我几眼;谁知我丈夫醋劲大发,把人赶走了。这位中年男子对人说:那天旁晚一人去逛公园,正感无聊时,想抽支烟,由於去得伧促未曾带打火机,看见有夫妇二人坐在椅子上抽烟;我便前去借火,没想到,他们把我赶走了;我想那位丈夫一定神经不正常。可是在伦敦的一家晚报上,却是这样记载的:那天旁晚在海德公园里,有一醉汉走向一对正在热恋的情人,虽然以借为名,可能由於酒后失态,却遭到这对夫妇的严厉拒绝。 又如,《汉书律历志》所载王莽嘉量斛的有关情况与现存实物王莽嘉量斛之铭文基本相同,只有嘉量斛的大小尺寸数,并未涉及其计算方法;但是,有人却依据其大小尺寸数用后世推求圆面积算法,逆推斛底面积而得到一圆周率,即: █(【10√"‘2"’+2?095】/2)"?2"?=162,或 █=1546648……≈1547于是认为这一圆周率πk=1547就是王莽或刘歆所创;因而以讹传讹,以致许多中、外学者误以为王莽或刘歆创造新圆周率为 πk=1547。 再如,在数学史专家钱宝琮校点《算经十书》中,他补绘之"日高图",增添了一条平行线,虽然按数学原理分析并无不妥,但所添这一平行线却是不必要的;而且也未必符合赵爽的原意;以致一些学人误解赵爽是按平行线推证的。 根据以上所说,一些记载固然与事实相符合,但也有一些记载与事实不相符合,甚至与事实相悖。为了弄清事实真象,仅凭记载是不足徵信的,必须进行一番严密考证,没有考证,或不考证,不足以辨真伪;可见,研究历史或研究数学的发展历史,"考证"是其重要的一环。二、考证的类别及其作用三、考证的方法 外国数学史在17、18世纪之前,三角学在欧洲已有所发展。就以三角学的名称而论,是德国数学家毕的斯克斯( B Pitiscus, 1561-1613 )在 1595 年出版的《三角学,或解三角形五卷( Trigonometriae Sive, De dimensione Triangulor Libriquinque)》中,首先提出来的,解释说:“Trigonometriae est doctrina dedimausione triangulaum(三角学就是解三角形的学说)”。其“Trigonometriae”一词是由拉丁文“trigonon(三角形)”及“metron(测量)”两词所组成,而这两词是由希腊文“Τριγωμον(三角形)”及“Μετρον(测量)”演变来的。如将“trigonometriae”直译为汉语,应是“三角形的测量”。犹如《大测》中所说“大测者,测三角形之法也。……,大於他测,故名大测”。若以近代术语来表示,当为“解三角形”。三角学虽然起源很早,但其名称却形成较晚,由其名称的形成来分析,三角形的测量或解三角形也三角学的起源之一。在中国,“三角学”一名是由“三角算法”、“平三角”、“弧三角”等名称逐渐演变成的。 三角学的发展,由起源迄今差不多经历了三、四千年之久,在古代,由於古代天文学的需要,为了计算某些天体的运行行程问题,需要解一些球面三角形,在解球面三角形时,往往把解球面三角形的问题归结成解平面三角形,这些问题的积累便形成了所谓古代球面三角学、古代平面三角学;虽然古代球面三角学的发展早于古代平面三角学,但古代平面三角学却是古代球面三角学的发展基础。在古希腊,为了便於观察天体的运行及解球面三角形,著名天算家托勒密(Ptolemy,约87-165)在前人希巴卡斯(Hipparchus,约公元前180-125)的基础上,也编制了所谓“弦表”,他藉助于几何知识,编制了从 0?到 90?每隔(1/2)?弧的弦长表,在编制中,也曾发现一些球面三角学与平面三角学的关系式,并且计算过 (90?-?) 弧的弦长;可是,希腊人却未引用“α余弧的弦”或“余弦”这类名称。 8-12世纪,希腊文化传入印度以及阿拉伯,在这些国家里,不但提出“正弦”一词,还以几何方法定义了“余弦线”、“正切线”、“余切线”以及“正矢线”的意义,并编制了各种三角表;其编制方法虽不相同,但编制的数值却相当精密,对三角学提供了不少贡献;阿拉伯天文学家纳速拉丁(Nasir al-Din al-Tusi,1201-1274)在他的著作《论四边形》里,首先把三角学从天文学中分割出来,看作为一门独立的学科。12-15世纪,三角学传入欧洲,德国著名数学家列吉奥蒙坦(Regiomontanus,1436-1476) 与纳速拉丁一样,也把三角学看作一门独立学科,着有《论各种三角形 (De triangulis omnimodis)》,其中重点讨论了三角形的解法,并编制了十分精密的“正弦表”,还创造了一些三角公式,对三角学理论提高到一定的水平,为三角学发展起到了不可忽视的作用。数学史教育自建国以来,由於中算史专家李俨教授、钱宝琮教授、严敦杰教授的提倡,在国内有不少自发的人员从事于数学史研究,这些人员都是各自独立地进行研究,相互之间,在学术上很少进行磋商,但是,在中国数学史、外国数学史上确有许多急需解决的疑难问题,也就是由於当时形势的需要,急需把这些“个体户”组织起来,按“互助组”的形式进行研究。 自1977年“互助组”成立以来,已有十五年了。在这期间,相互切磋、相互提携、相互支援、相互协助共同为中国科学、技术史作了不少可喜工作。例如,1984年受国家教委的委托,在北京师范大学举办了“中、外数学史讲习班”,除有百余所高等院校派员参加学习外,还有当代著名数学家江泽涵教授、吴文俊教授、王梓坤教授光临“讲习班”,进行指导并讲话,“讲习班”还邀请了全国十多名著名数学史家前来授课或作专题讲演;在“讲习班”期间,不但播放了中国数学古籍的幻灯片、故宫博物院库藏科、技文物幻灯片,而且有幸参观了故宫博物院库藏数百种科、技文物的实物。这次“讲习班”的活动,收到非常丰硕的效果,之后,有很多人对数学史产生了浓厚兴趣,加入了数学史的行列,从而对数学史进行学习、探讨、研究;也有人积极进行准备,拟开设数学史课,从而改变了全国只有十一所高校开设数学史课的极不相称之局面。在中国古典数学中,《九章算术》及《数书九章》是两部著名学术著作,其中有许多千古未解之谜及疑难问题,为了解决这些研究中以及教学中的难题,受国家教委的委托,于1986年在徐州师范学院举办了“《九章算术》暨《数书九章》暑期讲习班”,全国有四、五十所高等院校派员参加了这次“讲习班”。一致认为这次“讲习班”解决了在中国数学史的研究中、教学中的实际困惑和难点。“讲习班”期间,除讲授课程、专题报告外,还组织了多次“专题讨论”;在“专题讨论”中,可以自由发言,讲述个人的不同观点,并可以进行辩论和答问;因而“专题讨论”收到了意想不到的效果。之后,还参观了徐州地区的古迹和出土文物展览。 原先,由开设数学史课程的十一所高校,后来逐渐扩展为六十多所高校,但是这种大范围的扩展,使得数学史的教材成了当务之亟的问题,因而组织有关人员进行教材的编撰工作;于1986年、1987年分别出版了《中国数学简史》、《外国数学简史》两部高校教材,不止解决了一些高校缺少数学史教材问题,也可供给某些研究生作为业余的读物,这两部教材现已被广大高校所采用。 为了统一各高校数学史的教学要求,为了划一数学史研究生的培养方案,受国家教委的委托,于1984年在北京师范大学召集了八所高等学校,共同制定了《高校中、外数学史教学大纲(草案)》、《数学史研究生培养方案(草案)》,并呈报给国家教委备案。 在培养研究生方面,不但使研究生互访“互助组”各校的有关人员,而且还相互邀请“互助组”各校的有关人员前来授课,从而促进各校之间对研究生培养的联系;至於前来北京师大进修的德国慕尼黑大学进修生、日本东海大学高级进修生、日本东北大学进修生,也得到“互助组”各校有关人员的支持。 为了深入探讨中国古典数学名著,制定了《中国数学史研究丛书》的规划,于1982年、1987年分别出版了两部学术专著,即《〈九章算术〉与刘徽》、《秦九韶与〈数书九章〉》。这两部书出版后,在国内、外引起强烈反应,得到国内、外许多专家的高度评价,认为中国数学史的研究,不但不是没有可深入研究的问题,而相反的是,认为中国数学史的研究前景,是非常广阔而大有作为的。因之,使得国内、外许多学者从事于中国数学史的研究。由於这两部专著的专题性很强,有些其他方面的学术论文不便收录,所以于差不多同时,先后出版了《中国数学史论文集(一)》、《中国数学史论文集(二)》、《中国数学史论文集(三)》;从而为广大学者和读者,提供了学术园地。 为了弘扬中国古代优秀科技文化,经国家教委批准,并经国家自然科学基金委两次资助以及其他五单位资助,分别于1987年、1991年在北京师范大学举办了“秦九韶《数书九章》成书740周年纪念暨学术研讨国际会议”、“《九章算术》暨刘徽学术思想国际研讨会”,像这样的专题性学术研讨会在国际上并不多见,因而受到国际学术界的重视,会前收到不少国际学术界知名人士的贺电,会后分别寄赠会议论文集,前来参加会议的学者,包括十多个国籍,分别为50余人、60余人;这两次专题性的国际会议,在国际学术界产生了巨大影响。 为了深入钻研中国古典数学,原拟计划先后出版《中国数学史论文集(四)》、《刘徽研究》、《中国数学史大系》、《南北朝数学》以及《隋唐数学》等书。其中《中国数学史论文集(四)》,早已发稿,由於技术上的原因,推迟了发排的时间;《中国数学史大系》,正在加紧撰写稿件;是国家“八五”期间重点图书,任重而道远,各位执笔者有信心完成任务。《刘徽研究》一书,是《〈九战算术〉与刘徽》一书的继续和发展。经过六年准备,克服了许多困难,终至与读者见面,由于种种原因,还有许多不尽人意的地方,请作者和读者们谅解和批评、指正。《刘徽研究》能得以出版,还是与台湾九章出版社、陕西人民教育出版社、孙文先先生、杨益先生的鼎力相助和大力支持分不开的,在此,特致以由衷的谢意。原来计划全面而深入地探讨刘徽的各项成就,但是,由於发稿较晚、发排较迟、校对也费了不少时日,在这里特向读者致以深切的歉意。中国数学史大系由吴文俊先生任主编,白尚恕先生、沈康身先生、李迪先生任副主编的《中国数学史大系》是我社之重点选题,也是国家出版署核准的八五重点图书。其第一卷第一分册现已交稿。我社正在组织力量与作者合作,争取《中国数学史大系》早日与读者见面。几 点 说 明一、主、副编情况简介主 编:吴文俊 研究员 74岁 中国科学院 系统科学研究所 当代著名数学家兼数学史家,二十年来,从事数学史研究,著述丰盛,在国际学术界有一定影响。副主编:白尚恕 教授 72岁 北京师范大学 数学系从事数学史研究已有三十余年,出版独作与合作学术专著十多部、发表论文六十余篇。副主编:沈康身 教授 70岁 杭州大学 数学系从事数学史研究三十多年,出版独作与合作学术专著十数部、发表学术论文五十余篇。副主编:李 迪 教授 66岁 内蒙古师范大学 科学史研究所从事科学史研究有三十余年,出版独作与合作学术专著二十多部,发表学术论文近百篇。 二、主要执笔人员名单 白尚恕 教 授 北京师范大学 数学系 沈康身 教 授 杭州大学 数学系 李 迪 教 授 内蒙古师范大学 科学史研究所 李继闵 教 授 西北大学 数学史研究室 冯礼贵 教 授 山西教育学院 数学系 陆思贤 研究员 内蒙古考古研究所 李文林 研究员 中国科学院 数学研究所 罗见今 教 授 内蒙古师范大学 科学史研究所 李兆华 教 授 天津师范大学 数学系 郭金彬 副教授 福建师范大学 数学系 孔国平 副编审 中国科学院 科学出版社 刘洁民 副教授 北京师范大学 数学系 刘 逸 副教授 徐州师范学院 数学系 郭世荣 副教授 内蒙古师范大学 科学史研究所 骆祖英 副教授 浙江师范大学 数学系三、经费使用情况 国家出版署虽然核准《中国数学史大系》一书为"八五重点图书",除要求按期限、高质量出版外,却无分文资助。所有一切编写费用,悉凭自筹。 在编写《中国数学史大系》各分册之前,执笔者必需到各有关图书馆查阅一些善本或孤本图书,进行编写;写成初稿后,再集体讨论学术观点并研究修改方案;然后由各分册执行主编审查,由全书副主编、主编审阅。最后交定稿予北京师大出版社。 在查阅资料以及集体讨论学术观点、研究修改方案时,需要一笔活动经费,而这笔经费实非我等之辈所能承担。就以交付北京师大出版社的第一卷第一分册稿件而论,交稿之前进行了社会调查、学术咨询、查阅资料、召开讨论会议等,共耗费人民币八千余元。《中国数学史大系》全书 12 分册、附录 4分册,依此推算,所需甚巨。数学史与数学教育结合的实现研究 摘要:数学史的强大教育功能已逐渐为大家认识和接受,但在现行的教育背景下如何实现它与数学教育结合则研究得并不深入。本文从数学史教学内容选择的基本原则、数学史与中学数学教育的在课堂和课外的结合方式等几个方面对这个问题进行研究。 关键词:数学史 数学教育 结合 数学史强大的教育功能逐渐被大家认识和接受,新课程中在选修模块中也加入了数学史的内容,但在现行的教育背景下如何实现数学史与数学教育的结合则研究得并不深入。实现数学史与数学教育的结合首当其冲的问题是在数学教育中如何选择数学史内容。 1 中学数学史教育内容选择的基本原则 既然是把数学史内容用于中学教学就必须考虑中学生的特点和它在中学教学中的作用。所以内容的选择必须遵循以下几个原则: 第一,针对性。我们需要明确中学数学史的内容是针对中学教学需要的,不是进行史学研究或考查。到底是杨辉三角还是贾宪三角都不是那么重要,重要的是它的特征和与二项式展开系数之间的关系。学习它们的目的不是进行史学研究,能引起学生兴趣就好,能启发学生思维就好,能增进学生认识就好。 第二,连贯性。这种连贯性不是说所选的数学史材料要按时间的顺序展现给学生,而是说在某一体系的介绍时保持一定的完整性。比如说初中阶段介绍负数的产生,无理数的发现,高中阶段在加上复数的应用,整个数域的扩充就保持了连贯性[1]。 第三,目的性。数学史与中学数学教育的结合首先要明确一个观点,不能为教历史而教历史,基本历史常识固然是需要的,但更高的层面应该是为数学教学而历史。数学史与中学数学教育的结合不仅仅是告诉学生一些有趣的故事,增加一些学习的花絮,而是实实在在的要促进学习,促进学生兴趣的培养,能力的提高。 在这种前提下,学生本身数学知识水平就显得有些重要了,数学史的内容不是简简单单的文字呈现的故事,而应该是有数学味道,学生能体会到的数学内容。大数学家的发明创造再简洁、再严密、再完美,中学生的知识层面制约了他们对这些数学内涵和魅力的欣赏。所以那些紧扣教材的,学生真正可以理解的内容就显得尤为宝贵了。在这些材料上的挖掘也许比讲讲那些对中学生来说高深的数学定理的名字,加上几句十分美好的感叹要有用得多。只有学生在对数学史内容的学习中遇到和数学家相似的困惑,才能理解数学家创造的精髓所在,产生思想上的共鸣,数学史教学的目的可以说才真正的达到了。 2 数学史与中学数学教育的结合方式探讨 具体到中学教学的实践,数学史与数学教育的结合可以从课堂和课外两个方面来实现: 1 数学史与数学教育在课堂的结合 数学史与数学教学最直接的结合是在课堂上,这种结合方式的最大优势在于教师的引导,教师自己对数学史的理解和感悟将直接影响到学生,教师高屋建瓴的数学理解、数学观点必将给学生醍醐灌顶之感。具体来说可以有以下几个方面: (1)数学史作为引入背景。好的开头是成功的一半。课堂情景的创设对整堂课的教学起着十分重要的作用,新一轮的课程改革对课堂情景的创设提出了更高的要求。数学史知识为课堂情景的创设提供了丰富的材料。一个古算术题,一段科学家的故事,都可能创造出充满趣味,引人入胜的课堂。 (2) 在课堂上展示。中学阶段生物、地理等课堂上展示的图片模型总是那么让人难忘和充满期待,数学课堂则显得枯燥很多。事实上,数学课堂上数学家的图片,邮票等实物的展示同样能使学生印象深刻[1],不要一成不变的认为数学课堂不需要“花哨”的包装,一张纸、一支笔就够了,生动形象、能引起学生兴趣和求知欲的包装是任何学科都需要的。 (3)直接与教学内容结合。数学史与教学内容的直接结合是一种最直接也是最有效的结合方式。这种方式的核心在于内容的选择,怎样的数学史内容与怎样的现行教学内容结合能相得益彰,有良好的教学效果是我们应该仔细斟酌的。 ①比较古今算法的异同; 有些数学问题古代已有算法,随着数学的发展产生了新的更简便的算法,所以古代算法就鲜为人知了,虽然这些算法看上去不及现代算法简单、易懂,但先辈们处理这些问题的指导思想、思维方法恰是一个智慧的宝库,值得研究和学习,从中汲取有益的养分。而且古代算法大都是中学生知识范围以内的,他们的能力可以研究和理解的,这些研究对与他们提高学习兴趣,训练思维,以及更进一步了解古代文明也是有帮助的。 ②不同地点的人对某一数学问题的研究比较; 不同地点的人对同一数学问题的研究方式清晰的反映不同地区数学研究特点的异同,无论是中国的重算轻理还是古希腊的思辨风格都可以在古代数学问题的研究中体现出来。比如勾股定理,世界上很多文明古国都对勾股定理的发现和研究做过贡献。 我国古代数学名著《九章算术》中就专设“勾股章”,正式提出勾股定理:“勾股各自乘,并而开方除,即弦”。魏刘徽在注释勾股章时曾用“以盈补需,出入相补”的方法做过证明,可惜插图失落,后经清朝李湟复原,使刘徽的文字注解与图形结合,“勾自乘为朱方,股自乘为青方,令出入相补,各从其类”。运用出入想补原理简洁的证明了勾股定理。 《几何原本》是西方最古老的数学巨著,它与《九章算术》交相辉映,成为现代数学的主要源流。欧几里得在《几何原本》卷1中证明了勾股定理,这一证明过程是平面几何的经典内容,二千多年来世界各国的教科书都以不同的形式介绍了它。 比较欧几里得的证明和刘徽、赵爽的证明,从数学思想来说,欧几里得的明证是立足于分割图形、合同变换等综合手段,与刘徽的思想是相通的。但欧氏的证明是建立在欧氏几何逻辑演绎的基础上的,而刘徽、赵爽的证明简洁巧妙,朴素的“出入相补”思想闪烁着古人的智慧,两种方法风格迥异,各有千秋。同时也鲜明的体现了中西方古代数学的特点。[3] 这样的例子在数学史中还有很多,它们对于学生领悟中西数学的特点和差异是很有帮助的。 2 数学史与数学教育在课外的结合 数学史与数学教育在课堂之外的结合是多样化的、丰富多彩的。实施这种方式的关键在于最大限度的发挥学生的能动性和积极性。 读书交流活动。数学史课外书籍的阅读和交流是一种很好的方式,利用寒暑假或者一个相对较长的时间提出任务,要求学生按自己的喜好阅读数学史书籍、故事,然后以小组为单位交流自己的心得体会。 中学阶段班级板报、学校宣传栏等场所都是进行数学史熏陶和教育的良好阵地。发挥学生积极性,定期办数学史专题板报,并进行年级评比也能收到良好的效果。 数学史知识小竞赛。以课外活动、兴趣小组的形式组织小组间,或班级间的数学史知识小竞赛可以在学校营造学习数学史了解数学史的良好氛围,对调动学生学习数学的积极性会产生积极的作用。 学生数学史报告会 可以选定某一题目,比如中国古代数学成就,微积分产生的背景和历史意义等,以小组为单位搜集资料,小组选出代表代表本组发言,其它小组同学可以提问。上海娄山中学的向红艳老师已经做了这样的尝试,以中国现代数学家的奋斗历程为中心内容,选择华罗庚、陈景润、苏步青、杨乐、陈省身、丘成桐这6位数学家,学生分6组搜集材料,谈他们的生平、贡献,还请了华东师范大学的张奠宙教授来观摩,取得了很好的教学效果。课后张奠宙教授做了这样的评价:“他们(学生)的语言行动,贴近学生,比老师正面阐述更有亲和力我尤其欣赏向老师的系列数学史的设想。数学史寓于数学课之中,其教育潜力十分巨大……可以相信,数学史教学不仅不会影响数学学习的成绩,相反,将会起到正面的推动作用。”[2] 专家数学报告 高等院校与中学教育的结合一直是我国教育的薄弱环节,高校中的优秀教师、数学家、数学史家、数学教育家如果能走进中学的课堂,走近中学生,那对中学生来说将是一笔巨大的财富。事实上,像上面提到的张奠宙教授一样,很多有识的学者已经在这方面做了有益的尝试。浙江师范大学数理学院教授张维忠博士曾到浙江台州市路桥中学,为高三部分学生开了一个讲座—《神奇的数》,他引经据典,带领学生漫步在美妙的数王国,使学生充分领略了数学的风光美景,讲得十分精彩,而学生首次见识到课本以外这么神奇的数学内容,无不感到新鲜异常,听得异常投人,表现出强烈的兴趣。[2]这样的报告可能终生难忘,对学生改善对数学学科的认识,提高学习兴趣能起到意想不到的作用。 参考书目: [1]朱 哲,张维忠中小学数学课程中数学史的呈现方式[J] 浙江师范大学学报(自然科学 版)2004,27(4): [2]向红艳一节有关数学史的课[J]数学教学,2003,(9): [3]郁组权著中国古算解趣[M]北京:科学出版社,2004,10:138-141:216- [4]王青建数学史:从书斋到课堂[J]自然科学史研究,2004,2: [5]苏英俊,汪晓勤略论数学史对数学教育的意义[J]数学通讯,2005,(1): [6]李文林数学史概论[M]北京:高等教育出版社,2003,8:

学习数学史在数学学习中的作用学习一门学科首先要弄清楚这是一门怎样的学科,《标准》明确提出要使学生“初步了解数学产生与发展的过程,体会数学对人类文明发展的作用”,而现阶段高中学生对数学的看法大都停留在感性的层面上——枯燥、难学。数学的本质特征是什么?当今数学究竟发展到了哪个阶段?在科学中的地位如何?与其它学科有什么联系?这些问题大都不被学生全面了解,而从数学史中可以找到这些问题的答案。 日本数学家藤天宏教授在第九次国际数学教育大会报告中指出,人类历史上有四个数学高峰:第一个是古希腊的演绎数学时期,它代表了作为科学形态的数学的诞生,是人类“理性思维”的第一个重大胜利;第二个是牛顿-莱布尼兹的微积分时期,它为了满足工业革命的需要而产生,在力学、光学、工程技术领域获得巨大成功;第三个是希尔伯特为代表的形式主义公理化时期;第四个是以计算机技术为标志的新数学时期,我们现在就处在这个时期。而数学历史上的三大危机分别是古希腊时期的不可公度量,17、18世纪微积分基础的争论和20世纪初的集合论悖论,它同前三个高峰有着惊人的密切联系,这种联系绝不是偶然,它是数学作为一门追求完美的科学的必然。学生可以从这种联系中发现数学追求的是清晰、准确、严密,不允许有任何杂乱,不允许有任何含糊,这时候学生就很容易认识到数学的三大基本特征——抽象性、严谨性和广泛应用性了。 同时,介绍必要的数学史知识可以使学生在平时的学习中对所学问题的背景产生更加深入的理解,认识到数学绝不是孤立的,它与其他很多学科都关系密切,甚至是很多学科的基础和生长点,对人类文明的发展起着巨大的作用。从数学史上看,数学和天文学一直都关系密切,海王星的发现过程就是一个很好的例子;它与物理学也密不可分,牛顿、笛卡儿等人既是著名的数学家也是著名的物理学家。在我们所处的新数学时期,数学(不仅仅是自然科学)逐步进入社会科学领域,发挥着意想不到的作用,可以说一切高技术的背后都有某种数学技术支持,数学技术已经成为知识经济时代的一个重要特征。这些认识对于一个学习数学十余年的高中生来说是很有必要,也是必不可少的。 一、 学习数学史有利于培养学生正确的数学思维方式 现行的数学教材一般都是经过了反复推敲的,语言十分精练简洁。为了保持了知识的系统性,把教学内容按定义、定理、证明、推论、例题的顺序编排,缺乏自然的思维方式,对数学知识的内涵,以及相应知识的创造过程介绍也偏少。虽利于学生接受知识,但很容易使学生产生数学知识就是先有定义,接着总结出性质、定理,然后用来解决问题的错误观点。所以,在教学与学习的过程中存在着这样一个矛盾:一方面,教育者为了让学生能够更快更好的掌握数学知识,将知识系统化;另一方面,系统化的知识无法让学生了解到知识大都是经过问题、猜想、论证、检验、完善,一步一步成熟起来的。影响了学生正确数学思维方式的形成。 数学史的学习有利于缓解这个矛盾。通过讲解一些有关的数学历史,让学生在学习系统的数学知识的同时,对数学知识的产生过程,有一个比较清晰的认识,从而培养学生正确的数学思维方式。这样的例子很多,比如说微积分的产生:传统的欧式几何的演绎体系是产生不了微积分的,它是牛顿、莱布尼兹在古希腊的“穷竭法”、“求抛物线弓形面积”等思想的启发下为了满足第一次工业革命的需要创造得到的,产生的初期对“无穷小”的定义比较含糊,也不像我们现在看到的这样严密,在数学家们的不断补充、完善下,经过几十年才逐步成熟起来的。 数学史的学习可以引导学生形成一种探索与研究的习惯,去发现和认识在一个问题从产生到解决的过程中,真正创造了些什么,哪些思想、方法代表着该内容相对于以往内容的实质性进步。对这种创造过程的了解,可以使学生体会到一种活的、真正的数学思维过程,有利于学生对一些数学问题形成更深刻的认识,了解数学知识的现实来源和应用,而不是单纯地接受教师传授的知识,从而可以在这种不断学习,不断探索,不断研究的过程中逐步形成正确的数学思维方式。 二、 学习数学史有利于培养学生对数学的兴趣,激发学习数学的动机 动机是激励人、推动人去行动的一种力量,从心理学的观点讲,动机可分为两个部分;人的好奇心、求知欲、兴趣、爱好构成了有利于创造的内部动机;社会责任感构成了有利于创造的外部动机。兴趣是最好的动机。在日本中学生夺取国际IEA调查总分第一名的同时,却发现日本学生不喜欢数学的比例也是第一,这说明他们的好成绩是在社会、家长、学校的压力下获得的。中国的情况如何呢?尚无全面的报道,但河南省新乡市四所中学的高中生学习数学情况的调查发现:“我不喜欢数学,但为了高考,我必须学好数学”的学生占被调查者的比例高达21%,而对数学“很感兴趣”的只有12%。可见目前中学生的学习动机不明确,对数学的兴趣也很不够,这些都极大地影响了学习数学的效果。但这并不是因为数学本身无趣,而是它被我们的教学所忽视了。在数学教育中适当结合数学史有利于培养学生对数学的兴趣,克服动机因素的消极倾向。 数学史中有很多能够培养学生学习兴趣的内容,主要有这几个方面:一是与数学有关的小游戏,例如巧拿火柴棒、幻方、商人过河问题等,它们有很强的可操作性,作为课堂活动或是课后研究都可以达到很好的效果。二是一些历史上的数学名题,例如七桥问题、哥德巴赫猜想等,它们往往有生动的文化背景,也容易引起学生的兴趣。还有一些著名数学家的生平、轶事,比如说一些年轻的数学家成材的故事,《标准》中提到的“从阿贝尔到伽罗瓦”,阿贝尔22岁证明一般五次以上代数方程不存在求根公式,伽罗瓦创建群论的时候只有18岁。还有法国数学家帕斯卡,16岁成为射影几何的奠基人之一,19岁发明原始计算器;德国数学家高斯19岁解决正多边形作图的判定问题,20岁证明代数基本定理,24岁出版影响整个19世纪数论发展、至今仍相当重要的《算术研究》;还有的是许多出生贫穷卑微的数学家通过自己的艰苦努力,最终在的数学研究上有骄人成绩的例子,如19世纪的大几何学家施泰纳出身农家自幼务农,直到14岁还没有学过写字,18岁才正式开始读书,后来靠做私人教师谋生,经过艰苦努力,终于在30岁时在数学上做出重要工作,一举成名。如果在教学中加入这些学生感兴趣又有知识性的内容,消除学生对数学的恐惧感,增加数学的吸引力,数学学习也许就不再是被迫无奈的了。 三、学习数学史为德育教育提供了舞台 在《标准》的要求下,德育教育已经不是像以前那样主要是政治、语文、历史这些学科的事了,数学史内容的加入使数学教育有更强大的德育教育功能,我们从下几个方面来探讨一下。 首先,学习数学史可以对学生进行爱国主义教育。现行的中学教材讲的大都是外国的数学成就,对我国在数学史上的贡献提得很少, 其实中国数学有着光辉的传统,有刘徽、祖冲之、祖暅、杨辉、秦九韶、李冶、朱世杰等一批优秀的数学家,有中国剩余定理、祖暅公理、“割圆术”等具有世界影响的数学成就,对其中很多问题的研究也比国外早很多年。《标准》中“数学史选讲”专题3就是“中国古代数学瑰宝”,提到《九章算术》、“孙子定理”这些有代表意义的中国古代数学成就。 然而,现阶段爱国主义教育又不能只停留在感叹我国古代数学的辉煌上。从明代以后中国数学逐渐落后于西方,20世纪初,中国数学家踏上了学习并赶超西方先进数学的艰巨历程。《标准》中“数学史选讲”专题11—— “中国现代数学的发展”也提到要介绍“现代中国数学家奋发拼搏,赶超世界数学先进水平的光辉历程”。在新时代的要求下,除了增强学生的民族自豪感之外,还应该培养学生的“国际意识”,让学生认识到爱国主义不是体现在“以己之长,说人之短”上,在科学发现上全人类应该相互学习、互相借鉴、共同提高,我们要尊重外国的数学成就,虚心的学习,“洋为中用”。 其次,学习数学史可以引导学生学习数学家的优秀品质。任何一门科学的前进和发展的道路都不是平坦的,无理数的发现,非欧几何的创立,微积分的发现等等这些例子都说明了这一点。数学家们或是坚持真理、不畏权威,或是坚持不懈、努力追求,很多人甚至付出毕生的努力。阿基米德在敌人破城而入危及生命的关头仍沉浸在数学研究之中,为的是“我不能留给后人一条没有证完的定理”。欧拉31岁右眼失明,晚年视力极差最终双目失明,但他仍以坚强的毅力继续研究,他的论文多而且长,以致在他去世之后的10年内,他的论文仍在科学院的院刊上持续发表。对那些在平时学习中遇到稍微繁琐的计算和稍微复杂的证明就打退堂鼓的学生来说,介绍这样一些大数学家在遭遇挫折时又是如何执著追求的故事,对于他们正确看待学习过程中遇到的困难、树立学习数学的信心会产生重要的作用。 最后,学习数学史可以提高学生的美学修养。数学是美的,无数数学家都为这种数学的美所折服。能欣赏美的事物是人的一个基本素质,数学史的学习可以引导学生领悟数学美。很多著名的数学定理、原理都闪现着美学的光辉。例如毕达哥拉斯定理(勾股定理)是初等数学中大家都十分熟悉的一个非常简洁而深刻的定理,有着极为广泛的应用。两千多年来,它激起了无数人对数学的兴趣,意大利著名画家达芬奇、印度国王Bhaskara、美国第20任总统Carfield等都给出过它的证明。1940年,美国数学家卢米斯在所著《毕达哥拉斯命题艺术》的第二版中收集了它的370种证明,充分展现了这个定理的无穷魅力。黄金分割同样十分优美和充满魅力,早在公元前6世纪它就为毕达哥拉斯学派所研究,近代以来人们又惊讶地发现,它与著名的斐波那契数列有着十分密切的内在联系。同时,在感叹和欣赏几何图形的对称美、尺规作图的简单美、体积三角公式的统一美、非欧几何的奇异美等时,可以形成对数学良好的情感体验,数学素养和审美素质也得到了提高,这是德育教育一个新的突破口。

数学史与数学文化小论文

谁知道呀!!!!!!!!!!!!!!!!!!!!!!!

可以解决生活的实际问题。

我可以写,私信

数学作为一种文化现象,早已是人们的常识历史地看,古希腊和文艺复兴时期的文化名人,往往本身就是数学家进入21世纪之后,数学文化的研究更加深入一个重要的标志是数学文化走进中小学课堂,渗入实际数学教学,努力使学生在学习数学过程中真正受到文化感染,产生文化共鸣,体会数学的文化品位,体察社会文化和数学文化之间的互动中国在春秋战国时期也有百家争鸣的学术风气,但是没有实行古希腊统治者之间的民主政治,而是实行君王统治制度春秋战国时期,也是知识分子自由表达见解的黄金年代当时的思想家和数学家,主要目标是帮助君王统治臣民,管理国家因此,中国的古代数学,多半以"管理数学"的形式出现,目的是为了丈量田亩,兴修水利,分配劳力,计算税收,运输粮食等国家管理的实用目标理性探讨在这里退居其次因此,从文化意义上看,中国数学可以说是"管理数学"和"木匠数学",存在的形式则是官方的文书古希腊的文化时尚,是追求精神上享受,以获得对大自然的理解为最高目标因此,"对顶角相等"这样的命题,在《几何原本》里列入命题15,借助公理3(等量减等量,其差相等)给予证明在中国的数学文化里,不可能给这样的直观命题留下位置 同样,中国数学强调实用的管理数学,却在算法上得到了长足的发展负数的运用,解方程的开根法,以及杨辉(贾宪)三角,祖冲之的圆周率计算,天元术那样的精致计算课题,也只能在中国诞生,而为古希腊文明所轻视 我们应当充分重视中国传统数学中的实用与算法的传统,同时又必须吸收人类一切有益的数学文化创造,包括古希腊的文化传统当进入21世纪的时候,我们作为地球村的村民,一定要溶入世界数学文化,将民族性和世界性有机地结合起来揭示数学文化内涵,走出数学孤立主义的阴影。数学的内涵,包括用数学的观点观察现实,构造数学模型,学习数学的语言,图表,符号表示,进行数学交流通过理性思维,培养严谨素质,追求创新精神,欣赏数学之美半个多世纪以前,著名数学家柯朗在名著《数学是什么》的序言中这样写道:"今天,数学教育的传统地位陷入严重的危机数学教学有时竟变成一种空洞的解题训练数学研究已出现一种过分专门化和过于强调抽象的趋势,而忽视了数学的应用以及与其他领域的联系教师学生和一般受过教育的人都要求有一个建设性的改造,其目的是要真正理解数学是一个有机整体,是科学思考与行动的基础" 2002年8月20日,丘成桐接受《东方时空》的采访时说:"我把《史记》当作歌剧来欣赏","由于我重视历史,而历史是宏观的,所以我在看数学问题时常常采取宏观的观点,和别人的看法不一样" 这是一位数学大家的数学文化阐述 《文汇报》2002年8月21日摘要刊出钱伟长的文章《哥丁根学派的追求》,其中提到:"这使我明白了:数学本身很美,然而不要被它迷了路应用数学的任务是解决实际问题,不是去完善许多数学方法,我们是以解决实际问题为己任的从这一观点上讲,我们应该是解决实际问题的优秀'屠夫',而不是制刀的'刀匠',更不是那种一辈子欣赏自己的刀多么锋利而不去解决实际问题的刀匠"这是一个力学家的数学文化观和所有文化现象一样,数学文化直接支配着人们的行动孤立主义的数学文化,一方面拒人于千里之外,使人望数学而生畏;另一方面,又孤芳自赏,自言自语,令人把数学家当成"怪人"学校里的数学,原本是青少年喜爱的学科,却成为过滤的"筛子",打人的"棒子"优秀的数学文化,会是美丽动人的数学王后,得心应手的仆人,聪明伶俐的宠物伴随着先进的数学文化,数学教学会变得生气勃勃,有血有肉,光彩照人多侧面地开展数学文化研究谈到数学文化,往往会联想到数学史确实,宏观地观察数学,从历史上考察数学的进步,确实是揭示数学文化层面的重要途径但是,除了这种宏观的历史考察之外,还应该有微观的一面,即从具体的数学概念,数学方法,数学思想中揭示数学的文化底蕴以下将阐述一些新视角,力求多侧面地展现数学文化 数学和文学数学和文学的思考方法往往是相通的举例来说,中学课程里有"对称",文学中则有"对仗"对称是一种变换,变过去了却有些性质保持不变轴对称,即是依对称轴对折,图形的形状和大小都保持不变那么对仗是什么 无非是上联变成下联,但是字词句的某些特性不变王维诗云:"明月松间照,清泉石上流"这里,明月对清泉,都是自然景物,没有变形容词"明"对"清",名词"月"对"泉",词性不变其余各词均如此变化中的不变性质,在文化中,文学中,数学中,都广泛存在着数学中的"对偶理论",拓扑学的变与不变,都是这种思想的体现文学意境也有和数学观念相通的地方徐利治先生早就指出:"孤帆远影碧空尽",正是极限概念的意境欧氏几何和中国古代的时空观初唐诗人陈子昂有句云:"前不见古人,后不见来者,念天地之悠悠,独怆然而涕下"这是时间和三维欧几里得空间的文学描述在陈子昂看来,时间是两头无限的,以他自己为原点,恰可比喻为一条直线天是平面,地是平面,人类生活在这悠远而空旷的时空里,不禁感慨万千数学正是把这种人生感受精确化,形式化诗人的想象可以补充我们的数学理解 数学与语言语言是文化的载体和外壳数学的一种文化表现形式,就是把数学溶入语言之中"不管三七二十一"涉及乘法口诀,"三下二除五就把它解决了"则是算盘口诀再如"万无一失",在中国语言里比喻"有绝对把握",但是,这句成语可以联系"小概率事件"进行思考"十万有一失"在航天器的零件中也是不允许的此外,"指数爆炸""直线上升"等等已经进入日常语言它们的含义可与事物的复杂性相联系(计算复杂性问题),正是所需要研究的"事业坐标""人生轨迹"也已经是人们耳熟能详的词语 数学的宏观和微观认识宏观和微观是从物理学借用过来的,后来变成一种常识性的名词以函数为例,初中和高中的函数概念有变量说和对应说之分,其实是宏观描述和微观刻画的区别初中的变量说,实际上是宏观观察,主要考察它的变化趋势和性态高中的对应则是微观的分析在分段函数的端点处,函数值在这一段,还是下一段,差一点都不行政治上有全局和局部,物理上有牛顿力学与量子力学,电影中有全景和细部,国画中有泼墨山水画和工笔花鸟画,其道理都是一样的是否要从这样的观点考察函数呢 数学和美学"1/2+1/3=2/5 "是不是和谐美 二次方程的求根公式美不美 这涉及到美学观三角函数课堂上应该提到音乐,立体几何课总得说说绘画,如何把立体的图形画在平面上欣赏艾舍尔的画,计算机画出的分形图,也是数学美的表现

数学史论文600字

初中数学小论文今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做!!!想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,947×5=244,把首项加末项的和乘项数除以2,(9244)×48÷2=6072。这样就完成了!想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(148)×48÷2×2(249)×48÷2×2(350)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法!想法三:我又发现有N组时,他的和也是把(1234……N)×54N=你要求那N组数的和,比如(1234……48)×54×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!

高中:人类是动物进化的产物,最初也完全没有数量的概念。但人类发达的大脑对客观世界的认识已经达到更加理性和抽象的地步。这样,在漫长的生活实践中,由于记事和分配生活用品等方面的需要,才逐渐产生了数的概念。比如捕获了一头野兽,就用1块石子代表。捕获了3头,就放3块石子。"结绳记事"也是地球上许多相隔很近的古代人类共同做过的事。我国古书《易经》中有"结绳而治"的记载。传说古代波斯王打仗时也常用绳子打结来计算天数。用利器在树皮上或兽皮上刻痕,或用小棍摆在地上计数也都是古人常用的办法。这些办法用得多了,就逐渐形成数的概念和记数的符号。 数的概念最初不论在哪个地区都是1、2、3、4……这样的自然数开始的,但是记数的符号却大小相同。 古罗马的数字相当进步,现在许多老式挂钟上还常常使用。 实际上,罗马数字的符号一共只有7个:I(代表1)、V(代表5)、X(代表10)、L(代表50)、C代表100)、D(代表500)、M(代表1,000)。这7个符号位置上不论怎样变化,它所代表的数字都是不变的。它们按照下列规律组合起来,就能表示任何数: 1.重复次数:一个罗马数字符号重复几次,就表示这个数的几倍。如:"III"表示"3";"XXX"表示"30"。 2.右加左减:一个代表大数字的符号右边附一个代表小数字的符号,就表示大数字加小数字,如"VI"表示"6","DC"表示"600"。一个代表大数字的符号左边附一个代表小数字的符号,就表示大数字减去小数字的数目,如"IV"表示"4","XL"表示"40","VD"表示"495"。 3.上加横线:在罗马数字上加一横线,表示这个数字的一千倍。如:""表示 "15,000",""表示"165,000"。 我国古代也很重视记数符号,最古老的甲骨文和钟鼎中都有记数的符号,不过难写难认,后人没有沿用。到春秋战国时期,生产迅速发展,适应这一需要,我们的祖先创造了一种十分重要的计算方法--筹算。筹算用的算筹是竹制的小棍,也有骨制的。按规定的横竖长短顺序摆好,就可用来记数和进行运算。随着筹算的普及,算筹的摆法也就成为记数的符号了。算筹摆法有横纵两式,都能表示同样的数字。 从算筹数码中没有"10"这个数可以清楚地看出,筹算从一开始就严格遵循十位进制。9位以上的数就要进一位。同一个数字放在百位上就是几百,放在万位上就是几万。这样的计算法在当时是很先进的。因为在世界的其他地方真正使用十进位制时已到了公元6世纪末。但筹算数码中开始没有"零",遇到"零"就空位。比如"6708",就可以表示为"┴ ╥ "。数字中没有"零",是很容易发生错误的。所以后来有人把铜钱摆在空位上,以免弄错,这或许与"零"的出现有关。不过多数人认为,"0"这一数学符号的发明应归功于公元6世纪的印度人。他们最早用黑点(·)表示零,后来逐渐变成了"0"。 说起"0"的出现,应该指出,我国古代文字中,"零"字出现很早。不过那时它不表示"空无所有",而只表示"零碎"、"不多"的意思。如"零头"、"零星"、"零丁"。"一百零五"的意思是:在一百之外,还有一个零头五。随着阿拉数字的引进。"105"恰恰读作"一百零五","零"字与"0"恰好对应,"零"也就具有了"0"的含义。 如果你细心观察的话,会发现罗马数字中没有"0"。其实在公元5世纪时,"0"已经传入罗马。但罗马教皇凶残而且守旧。他不允许任何使用"0"。有一位罗马学者在笔记中记载了关于使用"0"的一些好处和说明,就被教皇召去,施行了拶(zǎn)刑,使他再也不能握笔写字。 但"0"的出现,谁也阻挡不住。现在,"0"已经成为含义最丰富的数字符号。"0"可以表示没有,也可以表示有。如:气温0℃,并不是说没有气温;"0"是正负数之间唯一的中性数;任何数(0除外)的0次幂等于1;0!=1(零的阶乘等于1)。 除了十进制以外,在数学萌芽的早期,还出现过五进制、二进制、三进制、七进制、八进制、十进制、十六进制、二十进制、六十进制等多种数字进制法。在长期实际生活的应用中,十进制最终占了上风。 现在世界通用的数码1、2、3、4、5、6、7、8、9、0,人们称之为阿拉伯数字。实际上它们是古代印度人最早使用的。后来阿拉伯人把古希腊的数学融进了自己的数学中去,又把这一简便易写的十进制位值记数法传遍了欧洲,逐渐演变成今天的阿拉伯数字。 数的概念、数码的写法和十进制的形成都是人类长期实践活动的结果。 随着生产、生活的需要,人们发现,仅仅能表示自然数是远远不行的。如果分配猎获物时,5个人分4件东西,每个人人该得多少呢?于是分数就产生了。中国对分数的研究比欧洲早1400多年!自然数、分数和零,通称为算术数。自然数也称为正整数。 随着社会的发展,人们又发现很多数量具有相反的意义,比如增加和减少、前进和后退、上升和下降、向东和向西。为了表示这样的量,又产生了负数。正整数、负整数和零,统称为整数。如果再加上正分数和负分数,就统称为有理数。有了这些数字表示法,人们计算起来感到方便多了。 但是,在数字的发展过程中,一件不愉快的事发生了。让我们回到大经贸部2500年前的希腊,那里有一个毕达哥拉斯学派,是一个研究数学、科学和哲学的团体。他们认为"数"是万物的本源,支配整个自然界和人类社会。因此世间一切事物都可归结为数或数的比例,这是世界所以美好和谐的源泉。他们所说的数是指整数。分数的出现,使"数"不那样完整了。但分数都可以写成两个整数之比,所以他们的信仰没有动摇。但是学派中一个叫希帕索斯的学生在研究1与2的比例中项时,发现没有一个能用整数比例写成的数可以表示它。如果设这个数为X,既然,推导的结果即x2=2。他画了一个边长为1的正方形,设对角线为x ,根据勾股定理x2=12+12=2,可见边长为1的正方形的对角线的长度即是所要找的那个数,这个数肯定是存在的。可它是多少?又该怎样表示它呢?希帕索斯等人百思不得其解,最后认定这是一个从未见过的新数。这个新数的出现使毕达哥拉斯学派感到震惊,动摇了他们哲学思想的核心。为了保持支撑世界的数学大厦不要坍塌,他们规定对新数的发现要严守秘密。而希帕索斯还是忍不住将这个秘密泄露了出去。据说他后来被扔进大海喂了鲨鱼。然而真理是藏不住的。人们后来又发现了很多不能用两整数之比写出来的数,如圆周率就是最重要的一个。人们把它们写成 π、等形式,称它们为无理数。 有理数和无理数一起统称为实数。在实数范围内对各种数的研究使数学理论达到了相当高深和丰富的程度。这时人类的历史已进入19世纪。许多人认为数学成就已经登峰造极,数字的形式也不会有什么新的发现了。但在解方程的时候常常需要开平方如果被开方数负数,这道题还有解吗?如果没有解,那数学运算就像走在死胡同中那样处处碰壁。于是数学家们就规定用符号"i "表示"-1"的平方根,即i=,虚数就这样诞生了。"i "成了虚数的单位。后人将实数和虚数结合起来,写成 a+bi的形式(a、b均为实数),这就是复数。在很长一段时间里,人们在实际生活中找不到用虚数和复数表示的量,所以虚数总让人感到虚无缥缈。随着科学的发展,虚数现在在水力学、地图学和航空学上已经有了广泛的应用,在掌握和会使用虚数的科学家眼中,虚数一点也不"虚"了。 数的概念发展到虚和复数以后,在很长一段时间内,连某些数学家也认为数的概念已经十分完善了,数学家族的成员已经都到齐了。可是1843年10月16日,英国数学家哈密尔顿又提出了"四元数"的概念。所谓四元数,就是一种形如的数。它是由一个标量(实数)和一个向量(其中x 、y 、z 为实数)组成的。四元数的数论、群论、量子理论以及相对论等方面有广泛的应用。与此同时,人们还开展了对"多元数"理论的研究。多元数已超出了复数的范畴,人们称其为超复数。 由于科学技术发展的需要,向量、张量、矩阵、群、环、域等概念不断产生,把数学研究推向新的高峰。这些概念也都应列入数字计算的范畴,但若归入超复数中不太合适,所以,人们将复数和超复数称为狭义数,把向量、张量、矩阿等概念称为广义数。尽管人们对数的归类法还有某些分歧,但在承认数的概念还会不断发展这一点上意见是一致的。到目前为止,数的家庭已发展得十分庞大。古代数学史: ①古希腊曾有人写过《几何学史》,未能流传下来。 ②5世纪普罗克洛斯对欧几里得《几何原本》第一卷的注文中还保留有一部分资料。 ③中世纪阿拉伯国家的一些传记作品和数学著作中,讲述到一些数学家的生平以及其他有关数学史的材料。 ④12世纪时,古希腊和中世纪阿拉伯数学书籍传入西欧。这些著作的翻译既是数学研究,也是对古典数学著作的整理和保存。 近代西欧各国的数学史: 是从18世纪,由J蒙蒂克拉、C博絮埃、AC克斯特纳同时开始,而以蒙蒂克拉1758年出版的《数学史》(1799~1802年又经Jde拉朗德增补)为代表。从19世纪末叶起,研究数学史的人逐渐增多,断代史和分科史的研究也逐渐展开,1945年以后,更有了新的发展。19世纪末叶以后的数学史研究可以分为下述几个方面。 ①通史研究 代表作可以举出MB康托尔的《数学史讲义》(4卷,1880~1908)以及CB博耶(1894、1919DE史密斯(2卷,1923~1925)、洛里亚(3卷,1929~1933)等人的著作。法国的布尔巴基学派写了一部数学史收入《数学原理》。以尤什凯维奇为代表的苏联学者和以弥永昌吉、伊东俊太郎为代表的日本学者也都有多卷本数学通史出版。1972年美国M克莱因所著《古今数学思想》一书,是70年代以来的一部佳作。 ②古希腊数学史 许多古希腊数学家的著作被译成现代文字,在这方面作出了成绩的有JL海贝格、胡尔奇、TL希思等人。洛里亚和希思还写出了古希腊数学通史。20世纪30年代起,著名的代数学家范·德·瓦尔登在古希腊数学史方面也作出成绩。60年代以来匈牙利的A萨博的工作则更为突出,他从哲学史出发论述了欧几里得公理体系的起源。 ③古埃及和巴比伦数学史 把巴比伦楔形文字泥板算书和古埃及纸草算书译成现代文字是艰难的工作。查斯和阿奇博尔德等人都译过纸草算书,而诺伊格鲍尔锲而不舍数十年对楔形文字泥板算书的研究则更为有名。他所著的《楔形文字数学史料研究》(1935、1937)、《楔形文字数学书》(与萨克斯合著,1945)都是这方面的权威性著作。他所著《古代精密科学》(1951)一书,汇集了半个世纪以来关于古埃及和巴比伦数学史研究成果。范·德·瓦尔登的《科学的觉醒》(1954)一书,则又加进古希腊数学史,成为古代世界数学史的权威性著作之一。 ④断代史和分科史研究 德国数学家(C)F克莱因著的《19世纪数学发展史讲义》(1926~1927)一书,是断代体近现代数学史研究的开始,它成书于20世纪,但其中所反映的对数学的看法却大都是19世纪的。直到1978年法国数学家J迪厄多内所写的《1700~1900数学史概论》出版之前,断代体数学史专著并不多,但却有(CH)H外尔写的《半个世纪的数学》之类的著名论文。对数学各分支的历史,从数论、概率论,直到流形概念、希尔伯特23个数学问题的历史等,有多种专著出现,而且不乏名家手笔。许多著名数学家参预数学史的研究,可能是基于(J-)H庞加莱的如下信念,即:“如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状”,或是如H外尔所说的:“如果不知道远溯古希腊各代前辈所建立的和发展的概念方法和结果,我们就不可能理解近50年来数学的目标,也不可能理解它的成就。” ⑤历代数学家的传记以及他们的全集与《选集》的整理和出版 这是数学史研究的大量工作之一。此外还有多种《数学经典论著选读》出现,辑录了历代数学家成名之作的珍贵片断。 ⑥专业性学术杂志 最早出现于19世纪末,MB康托尔(1877~1913,30卷)和洛里亚(1898~1922,21卷)都曾主编过数学史杂志,最有名的是埃内斯特勒姆主编的《数学宝藏》(1884~1915,30卷)。现代则有国际科学史协会数学史分会主编的《国际数学史杂志》。 中国数学史: 中国以历史传统悠久而著称于世界,在历代正史的《律历志》“备数”条内常常论述到数学的作用和数学的历史。例如较早的《汉书·律历志》说数学是“推历、生律、 制器、 规圆、矩方、权重、衡平、准绳、嘉量,探赜索稳,钩深致远,莫不用焉”。《隋书·律历志》记述了圆周率计算的历史,记载了祖冲之的光辉成就。历代正史《列传》中,有时也给出了数学家的传记。正史的《经籍志》则记载有数学书目。 在中国古算书的序、跋中,经常出现数学史的内容。 如刘徽注《九章算术》序 (263)中曾谈到《九章算术》形成的历史;王孝通“上缉古算经表”中曾对刘徽、祖冲之等人的数学工作进行评论;祖颐为《四元玉鉴》所写的序文中讲述了由天元术发展成四元术的历史。宋刊本《数术记遗》之后附录有“算学源流”,这是中国,也是世界上最早用印刷术保存下来的数学史资料。程大位《算法统宗》(1592)书末附有“算经源流”,记录了宋明间的数学书目。 以上所述属于零散的片断资料,对中国古代数学史进行较为系统的整理和研究,则是在乾嘉学派的影响下,在清代中晚期进行的。主要有:①对古算书的整理和研究,《算经十书》(汉唐间算书)和宋元算书的校订、注释和出版,参预此项工作的有戴震(1724~1777)、李潢(?~1811)、阮元(1764~1849)、沈钦裴(1829年校算《四元玉鉴》)、罗士琳(1789~1853)等人 ②编辑出版了《畴人传》(数学家和天文学家的传记),它“肇自黄帝,迄于昭(清)代,凡为此学者,人为之传”,它是由阮元、李锐等编辑的(1795~1799)。其后,罗士琳作“补遗”(1840),诸可宝作《畴人传三编》(1886),黄钟骏又作《畴人传四编》(1898)。《畴人传》,实际上就是一部人物传记体裁的数学史。收入人物多,资料丰富,评论允当,它完全可以和蒙蒂克拉的数学史相媲美。 利用现代数学概念,对中国数学史进行研究和整理,从而使中国数学史研究建立在现代科学方法之上的学科奠基人,是李俨和钱宝琮。他们都是从五四运动前后起,开始搜集古算书,进行考订、整理和开展研究工作的 经过半个多世纪,李俨的论文自编为《中算史论丛》(1~5集,1954~1955),钱宝琮则有《钱宝琮科学史论文集》(1984)行世。从20世纪30年代起,两人都有通史性中国数学史专著出版,李俨有《中国算学史》(1937)、《中国数学大纲》(1958);钱宝琮有《中国算学史》(上,1932)并主编了《中国数学史》(1964)。钱宝琮校点的《算经十书》(1963)和上述各种专著一道,都是权威性著作。 从19世纪末,即有人(伟烈亚力、赫师慎等)用外文发表中国数学史方面的文章。20世纪初日本人三上义夫的《数学在中国和日本的发展》以及50年代李约瑟在其巨著《中国科学技术史》(第三卷)中对中国数学史进行了全面的介绍。有一些中国的古典算书已经有日、英、法、俄、德等文字的译本。在英、美、日、俄、法、比利时等国都有人直接利用中国古典文献进行中国数学史的研究以及和其他国家和地区数学史的比较研究。采纳啊!!!!!!!!!!!!!!!

"数学之神"——阿基米德 阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。 后来阿基米德成为兼数学家与力学家的伟大学者,并且享有"力学之父"的美称。其原因在于他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的"阿基米德原理",他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用。 《砂粒计算》,是专讲计算方法和计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。 《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为: <π< ,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法。《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的 。在这部著作中,他还提出了著名的"阿基米德公理"。《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:"任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四。"他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。 《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法。《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题。《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。 《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体的体积。 丹麦数学史家海伯格,于1906年发现了阿基米德给厄拉托塞的信及阿基米德其它一些著作的传抄本。通过研究发现,这些信件和传抄本中,蕴含着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。 正因为他的杰出贡献,美国的ET贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯。不过以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德。-------------------------------------------------------------数学奇才、计算机之父--冯•诺依曼 20世纪即将过去,21世纪就要到来.我们站在世纪之交的大门槛,回顾20世纪科学技术的辉煌发展时,不能不提及20世纪最杰出的数学家之一的冯•诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯•诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父". 约翰•冯•诺依曼 ( John Von Nouma,1903-1957),美藉匈牙利人,1903年12月28日生于匈牙利的布达佩斯,父亲是一个银行家,家境富裕,十分注意对孩子的教育.冯•诺依曼从小聪颖过人,兴趣广泛,读书过目不忘.据说他6岁时就能用古希腊语同父亲闲谈,一生掌握了七种语言.最擅德语,可在他用德语思考种种设想时,又能以阅读的速度译成英语.他对读过的书籍和论文.能很快一句不差地将内容复述出来,而且若干年之后,仍可如此.1911年一1921年,冯•诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯•诺依曼还不到18岁.1921年一1923年在苏黎世大学学习.很快又在1926年以优异的成绩获得了布达佩斯大学数学博士学位,此时冯•诺依曼年仅22岁.1927年一1929年冯•诺依曼相继在柏林大学和汉堡大学担任数学讲师。1930年接受了普林斯顿大学客座教授的职位,西渡美国.1931年成为该校终身教授.1933年转到该校的高级研究所,成为最初六位教授之一,并在那里工作了一生.冯•诺依曼是普林斯顿大学、宾夕法尼亚大学、哈佛大学、伊斯坦堡大学、马里兰大学、哥伦比亚大学和慕尼黑高等技术学院等校的荣誉博士.他是美国国家科学院、秘鲁国立自然科学院和意大利国立林且学院等院的院土. 1954年他任美国原子能委员会委员;1951年至1953年任美国数学会主席.1954年夏,冯•诺依曼被使现患有癌症,1957年2月8日,在华盛顿去世,终年54岁. 冯•诺依曼在数学的诸多领域都进行了开创性工作,并作出了重大贡献.在第二次世界大战前,他主要从事算子理论、鼻子理论、集合论等方面的研究.1923年关于集合论中超限序数的论文,显示了冯•诺依曼处理集合论问题所特有的方式和风格.他把集会论加以公理化,他的公理化体系奠定了公理集合论的基础.他从公理出发,用代数方法导出了集合论中许多重要概念、基本运算、重要定理等.特别在 1925年的一篇论文中,冯•诺依曼就指出了任何一种公理化系统中都存在着无法判定的命题. 1933年,冯•诺依曼解决了希尔伯特第5问题,即证明了局部欧几里得紧群是李群.1934年他又把紧群理论与波尔的殆周期函数理论统一起来.他还对一般拓扑群的结构有深刻的认识,弄清了它的代数结构和拓扑结构与实数是一致的.他对其子代数进行了开创性工作,并莫定了它的理论基础,从而建立了算子代数这门新的数学分支.这个分支在当代的有关数学文献中均称为冯•诺依曼代数.这是有限维空间中矩阵代数的自然推广. 冯•诺依曼还创立了博奕论这一现代数学的又一重要分支. 1944年发表了奠基性的重要论文《博奕论与经济行为》.论文中包含博奕论的纯粹数学形式的阐述以及对于实际博奕应用的详细说明.文中还包含了诸如统计理论等教学思想.冯•诺依曼在格论、连续几何、理论物理、动力学、连续介质力学、气象计算、原子能和经济学等领域都作过重要的工作. 冯•诺依曼对人类的最大贡献是对计算机科学、计算机技术和数值分析的开拓性工作.现在一般认为ENIAC机是世界第一台电子计算机,它是由美国科学家研制的,于1946年2月14日在费城开始运行.其实由汤米、费劳尔斯等英国科学家研制的"科洛萨斯"计算机比ENIAC机问世早两年多,于1944年1月10日在布莱奇利园区开始运行.ENIAC机证明电子真空技术可以大大地提高计算技术,不过,ENIAC机本身存在两大缺点:(1)没有存储器;(2)它用布线接板进行控制,甚至要搭接见天,计算速度也就被这一工作抵消了.ENIAC机研制组的莫克利和埃克特显然是感到了这一点,他们也想尽快着手研制另一台计算机,以便改进. 冯•诺依曼由ENIAC机研制组的戈尔德斯廷中尉介绍参加ENIAC机研制小组后,便带领这批富有创新精神的年轻科技人员,向着更高的目标进军.1945 年,他们在共同讨论的基础上,发表了一个全新的"存储程序通用电子计算机方案"--EDVAC(Electronic Discrete Variable AutomaticCompUter的缩写).在这过程中,冯•诺依曼显示出他雄厚的数理基础知识,充分发挥了他的顾问作用及探索问题和综合分析的能力. EDVAC方案明确奠定了新机器由五个部分组成,包括:运算器、逻辑控制装置、存储器、输入和输出设备,并描述了这五部分的职能和相互关系.EDVAC机还有两个非常重大的改进,即:(1)采用了二进制,不但数据采用二进制,指令也采用二进制;(2建立了存储程序,指令和数据便可一起放在存储器里,并作同样处理.简化了计算机的结构,大大提高了计算机的速度. 1946年7,8月间,冯•诺依曼和戈尔德斯廷、勃克斯在EDVAC方案的基础上,为普林斯顿大学高级研究所研制IAS计算机时,又提出了一个更加完善的设计报告《电子计算机逻辑设计初探》.以上两份既有理论又有具体设计的文件,首次在全世界掀起了一股"计算机热",它们的综合设计思想,便是著名的"冯• 诺依曼机",其中心就是有存储程序原则--指令和数据一起存储.这个概念被誉为'计算机发展史上的一个里程碑".它标志着电子计算机时代的真正开始,指导着以后的计算机设计.自然一切事物总是在发展着的,随着科学技术的进步,今天人们又认识到"冯•诺依曼机"的不足,它妨碍着计算机速度的进一步提高,而提出了"非冯•诺依曼机"的设想. 冯•诺依曼还积极参与了推广应用计算机的工作,对如何编制程序及搞数值计算都作出了杰出的贡献.冯•诺依曼于1937年获美国数学会的波策奖;1947年获美国总统的功勋奖章、美国海军优秀公民服务奖;1956年获美国总统的自由奖章和爱因斯坦纪念奖以及费米奖. 冯•诺依曼逝世后,未完成的手稿于1958年以《计算机与人脑》为名出版.他的主要著作收集在六卷《冯•诺依曼全集》中,1961年出版. -------------------------------------------------------------------------------------第一位数学女博士徐瑞云 徐瑞云,1915年6月15日生于上海,1927年2月考入上海著名的公立务本女中读书。徐瑞云从小喜欢数学,读中学时对数学的兴趣更加浓厚,因此,1932年9月高中毕业后报考了浙江大学数学系。当时,浙大数学系的教授有朱叔麟、钱宝琮、陈建功和苏步青。此外,还有几位讲师、助教。数学系的课程主要由陈建功和苏步青担任。当时数学系的学生很少,前一届两个班学生共五人,她这届也不过十几人。 当时苏步青才30岁,看上去十分年轻,因此徐瑞云的同学中有人认为苏步青是助教,可是听完一堂课后就不住地赞叹说:“想不到助教竟能讲得这么好。”这件事引起知情者的哄笑。徐瑞云在陈建功和苏步青的教导下,勤奋学习,专心听讲,认真做笔记,她的考试成绩经常是满分。1936年7月,徐瑞云以优异成绩毕业了,被浙大数学系留校任助教。1937年2月,26岁的徐瑞云与28岁的生物系助教江希明喜结伉俪。新婚三个月后,徐瑞云夫妇获得亨伯特留学德国的奖学金,双双乘船漂洋赴德国留学,攻读博士学位。 徐瑞云有幸被德国著名的数学大师卡拉凯屋独利接受,由他担任她的数学博士指导老师。当时有不少学生想请他作导师,他都没有同意。而徐瑞云这位东方女士因学习勤奋,数学功底扎实,成了卡拉凯屋独利的关门弟子。徐瑞云主要研究三角级数论。这门学科起源于物理学的热传导问题的傅里叶分析的主要部分,是当时国际上研究的热门之一,在中国还是一个空白。 徐瑞云为将来能在分析、函数论方面赶上世界先进水平,废寝忘食,广撷博采,把大部分时间都用在图书馆里。1940年底,徐瑞云获得博士学位,成了中国历史上第一位女数学博士。她的博士论文“关于勒贝格分解中奇异函数的傅里叶展开”,1941年发表在德国《数学时报》上。 完成学业的徐瑞云夫妇,随即离德回国,于1941年4月回到母校,双双被聘为副教授,正式登上在战火硝烟的大后方培养人才的讲台。在艰苦的条件下,陈建功和苏步青没有中断在杭州时共创的函数论和微分几何两个数学讨论班,这是一种教学相长、遴选英彦的科研形式,徐瑞云也参与其间。1944年11月,英国驻华科学考察团团长李约瑟参观了浙大数学系和理学院,连声称赞道:“你们这里是东方的剑桥!”这更加激励了徐瑞云的勤奋工作。她这时教的学生曹锡华、叶彦谦、金福临、赵民义、孙以丰、杨宗道等,后来都成了杰出的数学家和数学教育家。1946年,31岁的徐瑞云提升为正教授。 1952年,徐瑞云调入浙江师院,被任命为数学系主任,从此全身投入了艰苦的创建数学系的工作中。在她的领导下,没有几年功夫,数学系已初具规模,教学质量不断提高。第一届本科毕业生约有三分之一考取了研究生。他们系也成为全国同行的楷模,进入全国同行前列。徐瑞云在建设数学系的同时,没有忘记科学研究。她翻译了苏联那汤松的名著《实变函数论》。译本于1955年由高等教育出版社出版。 -----------------------------------------------------------------------达朗贝尔(Jean Le Rond d'Alembert,1717-1783)——法国著名的物理学家、数学家和天文学家,一生研究了大量课题,完成了涉及多个科学领域的论文和专著,其中最著名的有8卷巨著《数学手册》、力学专著《动力学》、23卷的《文集》、《百科全书》的序言等等。他的很多研究成果记载于《宇宙体系的几个要点研究》中。达朗贝尔生前为人类的进步与文明做出了巨大的贡献,也得到了许多荣誉。但在他临终时,却因教会的阻挠没有举行任何形式的葬礼。 达朗贝尔是一个军官的私生子,母亲是一位著名的沙龙女主人。达朗贝尔出生后,他的母亲为了不影响自己的名誉,把刚出生的儿子遗弃在教堂的石阶上,后被一名士兵捡到。达朗贝尔的亲生父亲得知这一消息后,把他找回来寄养给了一对工匠夫妇。 达朗贝尔少年时被父亲送到了一所教会学校,在那里他学习了很多数理知识,为他将来的科学研究打下了坚实的基础。难能可贵的是,在宗教学校里受到了许多神学思想的熏陶以后,达朗贝尔仍然坚信真理、一生探求科学的真谛、不盲从于宗教的认识论。后来他自学了一些科学家的著作,并且完成了一些学术论文。1741 年,凭借自己的努力,达朗贝尔进入了法国科学院担任天文学助理院士,在以后的两年里,他对力学作了大量研究,并发表了多篇论文和多部著作。1746年,达朗贝尔被提升为数学副院士。1750年以后,他停止了自己的科学研究,投身到了具有里程碑性质的法国启蒙运动中去。他参与了百科全书的编辑和出版,是法国百科全书派的主要首领。在百科全书的序言中,达朗贝尔表达了自己坚持唯物主义观点、正确分析科学问题的思想。在这一段时间之内,达朗贝尔还在心理学、哲学、音乐、法学和宗教文学等方面都发表了一些作品。 1760年以后,达朗贝尔继续进行他的科学研究。随着研究成果的不断涌现,达朗贝尔的声誉也不断提高。他尤其以写论文快速而闻名。1762年,俄国沙皇邀请达朗贝尔担任太子监护,但被他谢绝了;1764年,普鲁士国王邀请他到王宫住了三个月,并邀请他担任普鲁士科学院院长,也被他谢绝了。1754年,他被提升为法国科学院的终身秘书。欧洲很多国家的科学院都聘请他担任国外院士。 达朗贝尔的日常生活非常简单,白天工作,晚上去沙龙活动。他终生未婚,但有一位患难与共、生死相依的情人——沙龙女主人勒皮纳斯。达朗贝尔与养父母感情一直很好,直到1765年他47岁时才因病离开养父母,住到了勒皮纳斯家里。病愈后他一直居住在她的家里。可是在以后的日子里他在事业上进展缓慢,更使他悲痛欲绝的是勒皮纳斯小姐于1776年去世了。在绝望中他度过了自己的晚年。 由于达朗贝尔生前反对宗教,巴黎市政府拒绝为他举行葬礼。所以当这位科学巨匠离开这个世界的时候,即没有隆重的葬礼、也没有缅怀的追悼,只有他一个人被安静的埋葬在巴黎市郊的墓地里。 数学是达朗贝尔研究的主要课题,他是数学分析的主要开拓者。达朗贝尔为极限作了较好的定义,但他没有把这种表达公式化。波义尔做出这样的评价:达朗贝尔没有逃脱传统的几何方法的影响,不可能把极限用严格形式阐述;但他是当时几乎唯一一位把微分看成是函数极限的数学家。-----------------------------------------------------------------------“我们的希望是在21世纪看见中国成为数学大国。”——陈省身 2004年12月3日,国际数学大师、中科院外籍院士陈省身,在天津病逝。享年93岁。陈省身,1911年10月26日生于浙江嘉兴。少年时就喜爱数学,觉得数学既有趣又较容易,并且喜欢独立思考,自主发展,常常“自己主动去看书,不是老师指定什么参考书才去看”。陈省身1927年进入南开大学数学系,该系的姜立夫教授对陈省身影响很大。在南开大学学习期间,他还为姜立夫当助教。1930年毕业于南开大学,1931年考入清华大学研究院,成为中国国内最早的数学研究生之一。在孙光远博士指导下,发表了第—篇研究论文,内容是关于射影微分几何的。1932年4月应邀来华讲学的汉堡大学教授布拉希克对陈省身影响也不小,使他确定了以微分几何为以后的研究方向。1934年,他毕业于清华大学研究院,同年,得到汉堡大学的奖学金,赴布拉希克所在的汉堡大学数学系留学。在布拉希克研究室他完成了博士论文,研究的是嘉当方法在微分几何中的应用。1936年获得博土学位。从汉堡大学毕业之后,他来到巴黎。 1936年至1937年间在法国几何学大师E嘉当那里从事研究。E嘉当每两个星期约陈省身去他家里谈一次,每次一小时。“听君一席话,胜读十年书。” 大师面对面的指导,使陈省身学到了老师的数学语言及思维方式,终身受益。陈省身数十年后回忆这段紧张而愉快的时光时说,“年轻人做学问应该去找这方面最好的人”。 陈省身先后担任我国西南联大教授,美国普林斯顿高等研究所研究员,芝加哥大学、伯克利加州大学终身教授等,是美国国家数学研究所、南开大学数学研究所的创始所长。陈省身的数学工作范围极广,包括微分几何、拓扑学、微分方程、代数、几何、李群和几何学等多方面。他是创立现代微分几何学的大师。早在 40年代,他结合微分几何与拓扑学的方法,完成了黎曼流形的高斯—博内一般形式和埃尔米特流形的示性类论。他首次应用纤维丛概念于微分几何的研究,引进了后来通称的陈氏示性类。为大范围微分几何提供了不可缺少的工具。他引近的一些概念、方法和工具,已远远超过微分几何与拓扑学的范围,成为整个现代数学中的重要组成部分。陈省身还是一位杰出的教育家,他培养了大批优秀的博士生。

就是嘛~ 二、【伽菲尔德证明勾股定理的故事】 1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。 于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。 *****回答者:zhang_1118 - 江湖新秀 五级 2-19 17:47 ********1楼的一看就是抄袭人家的答案,把别人的劳动成果窃为已有!!!