江秀梅+刘洋
重金属污染的危害:镉:导致高血压,引起心脑血管疾病;破坏骨骼和肝肾,并能引起肾功能衰竭。汞:食入后直接沉入肝脏,对大脑、神经、视力破坏极大。天然水每升水中含毫克,就会导致人中毒。锑:与砷能使银手饰变成砖红色,对皮肤有放射性损伤。还能伤害骨骼、肝脏、肾脏。锰:超量时会使人甲状腺机能亢进。也能伤害重要器官。钒:伤人的心、肺,导致胆固醇代谢异常。钴:能对皮肤有放射性损伤。铊:会使人多发性神经炎。铅:是重金属污染中毒性较大的一种,一旦进入人体将很难排除。能直接伤害人的脑细胞,特别是胎儿的神经系统,可造成先天智力低下;对老年人会造成痴呆等。另外还有致癌、致突变作用。砷:是砒霜的组分之一,有剧毒,会致人迅速死亡。长期接触少量,会导致慢性中毒。另外还有致癌性。
我叫鑫小鑫
土壤重金属是指由于人类活动将金属加入到土壤中,致使土壤中重金属明显高于原生含量、并造成生态环境质量恶化的现象。重金属是指比重等于或大于的金属,如Fe、Mn、Zn、Cd、Hg、Ni、Co等;As是一种准金属,但由于其化学性质和环境行为与重金属多有相似之处,故在讨论重金属时往往包括砷,有的则直接将其包括在重金属范围内。由于土壤中铁和锰含量较高,因而一般认为它们不是土壤污染元素,但在强还原条件下,铁和锰所引起的毒害亦引起足够的重视。土壤一旦遭受重金属污染就很难恢复,因而应特别关注Cd、Hg、Cr、Pb、Ni、Zn、Cu等对土壤的污染,这些元素在过量情况下有较大的生物毒性,并可通过食物链对人体健康带来威胁。1、重金属的土壤化学行为进入土壤中的重金属的归宿将由一系列复杂的化学反应和物理与生物过程所控制。虽然不同重金属之间某些化学行为有相似之处,但它们并不存在完全的一致性。当它们加入土壤后,最初的可动性将在很大程度上依赖添加重金属的形态,也就是说这将依赖于金属的来源。在消化泥污中,与有机质相缔合的金属占有相当大的比例,仅有一小部分以硫化物、磷酸盐和氧化物而存在。熔炼厂的颗粒排放物含有金属氧化物;燃烧石油时,铅以溴代氯化物形式排出,但在大气和土壤中容易转化为硫酸铅和含氧硫酸铅。由于形态的不同,进入土壤中的金属离子的形态和量也很不相同,并直接影响重金属在土体的迁移、转化及植物效应。考试大环保工程师,值得您收藏的好站点!在不同土壤条件下,包括土壤的重金属类型、土地利用方式(水田、旱地、果园、林地、草场等),土壤的物理化学性状(土壤的酸碱度、氧化还原条件、吸附作用、络合作用等)的影响,都能引起土壤中重金属元素存在形态的差异,从而影响重金属的转化和作物对重金属的吸收。1)土壤氧化-还原条件与重金属的迁移转化:土壤是一个氧化-还原体系,土壤水分状况,土壤中有机质和硫的含量都处于动态变化之中。土壤中的氧化还原体系是一个由众多无机的和有机的单质氧化-还原体系组成的复杂体系。在无机体系中,重要的有氧体系、铁体系、硫体系和氢体系等。由起主导作用的决定电位体系控制。其中O2-H2O体系和硫体系在土壤氧化还原反应中作用明显,对重金属元素价态变化起重要作用。(1)O2-H2O体系:土壤中的氧主要来源于大气。降水和灌溉水也可带进以部分溶解氧。在水稻田中,稻根分泌的氧以及某些藻类光合作用放出的氧气也是来源之一。(2)H2体系:在旱地土壤中氢气是很少的,但在淹水状态下的强烈还原状态的土层中,往往有H2的积累。O2-H2O体系和H2体系是组成土壤氧化-还原体系的两个极端体系,土壤中其它的氧化-还原体系则介于两者之间。因此,这两个体系就构成了土壤氧化-还原电位的上限和下限。(3)硫体系:土壤中的硫以无机和有机两种形态存在,其含量一般在。在氧化条件下以硫酸盐的形式存在;在还原条件下以硫化氢或金属硫化物形式存在。金属元素按其性质一般可以大致分为难溶性(氧化固定)元素和还原难溶性(还原固定)元素,例如,铁、锰等属于前者;镉、铜、锌、铬则属于后者。氧化-还原作用不仅会使重金属元素还发生价态变化,而且还会使重金属元素的形态发生变化。例如,在氧化还原电位低时(+100mv左右)砷酸铁可还原成亚铁形态,电位进一步降低,以致使砷还原为亚砷酸盐,增强砷的移动性。相反,土壤中铁、铝组分的增加,又可能使水溶性砷转化为不溶态砷。2)土壤酸碱度与重金属迁移转化:土壤的pH对重金属的溶解度有密切关系。在碱性条件下,进入土壤的重金属多呈难溶态的氢氧化物,也可能以碳酸盐和磷酸盐的形态存在。它们的溶解度都比较小,因此土壤溶液中重金属的离子浓度也较低。例如,铜、镉、锌、铅等重金属氢氧化物的溶解度直接受土壤pH值控制。根据溶度积便能从理论上推求重金属离子浓度与pH的关系。随着pH值增大,重金属离子的浓度则下降。但对于两性化合物氢氧化铜和氢氧化锌来说,pH值高到一定程度时,它们又会溶解。3)土壤胶体的吸附作用与重金属迁移转化:土壤中含有丰富的无机和有机胶体。对进入土壤中的重金属元素具有明显的固定作用。一般地讲,在土壤重金属元素呈两种存在形式:(1)重金属元素在土壤溶液中呈胶体状态。这主要发生在湿润气候地区和富含有机质的酸性条件下,如铁、锰、铬、钛、钒、砷等元素可呈胶体形式存在,铜、铅、锌等也部分呈胶体形态迁移;(2)土壤中存在的有机和无机胶体对金属离子的吸附固定,它是许多金属离子和分子从不饱和溶液中转入固相的主要途径,是重金属在土壤积累而被污染的重要原因。土壤胶体能吸附重金属的数量,主要取决于土壤胶体的代换能力和重金属离子在土壤溶液中的浓度与酸碱度。在胶体对金属离子吸附时,金属离子可以由同晶替代作用吸附在晶格中,作为吸着离子,这种金属离子保持在胶体晶格中,则很难释放。总之,重金属元素被胶体的吸附固定,可分为两种方式,如金属元素吸附在胶体表面的交换点上,则较易释放;如保持在胶体矿物的晶格中,则很难释放,不利于金属元素的迁移。4)土壤中重金属的络合-螯合作用:重金属元素在土壤中除了吸附作用以外,还存在着络合、螯合作用。一般认为,当金属离子浓度高时,以吸附交换作用为主,而土壤溶液中重金属离子浓度低时,则以络合-螯合作用为主。在无机配位体中,人们比较多地重视金属与羟基和氯离子的络合作用。认为这两者是影响一些重金属难溶盐类溶解度的重要因素。羟基离子对重金属的络合作用实际上是重金属离子的水解反应。重金属在较低的pH值条件下可以水解。汞、镉、铅、锌等离子的水解作用表明,羟基与重金属的络合作用可大大提高重金属氢氧化物的溶解度。氯络合重金属离子的形式只会出现在含盐土壤中氯离子浓度较高时。一般土壤中氯离子浓度很低时,则不会形成重金属离子的氯络合物。土壤中腐殖质具有很强的螯合能力,具有与金属离子牢固螯合的配位体,如氨基、亚氨基、酮基、羟基及硫醚等基团。土壤中螯合物的稳定性受金属离子性质的影响。在金属离子与螯合基以离子键结合时,中心离子的离势越大,越有利于配位化合物的形成。5)土壤微生物对重金属的固定和活化土壤中微生物的种类和数量都是相当大的,它在重金属的归宿中也起着不可忽视的作用,有实验表明,镉与微生物体或它们的代谢产物络合能固定镉,并影响它们的生物有效性。有些微生物还通过生物转化作用或生理代谢活动使金属由高毒状态变为低毒状态。关于微生物对土壤重金属离子的影响主要可归纳为以下几方面:(1)胞外络合作用一些微生物能够产生胞外聚合物如多糖、糖蛋白、脂多糖等,具有大量的阴离子基团,与金属离子结合;某些微生物产生的代谢产物,如柠檬酸是一种有效的金属螯合剂,草酸则与金属形成不溶性草酸盐沉淀。(2)胞外沉淀作用在厌氧条件下,硫酸盐还原菌及其它微生物产生的硫化氢与金属离子作用,形成不溶性的硫化物沉淀。(3)金属的微生物转化微生物能够通过氧化、还原,甲基化和去甲基化作用转化重金属。大量的研究表明,微生物对重金属的抗性在很多情况下是由细胞中染色体的遗传物质-质粒或转座子抗性基因决定的。由抗性基因编码的金属解毒酶催化高毒性金属转化成为低毒状态。细菌、放线菌及某些真菌可以把汞离子还原成单质汞,从而使汞从土壤中挥发出去或以沉淀方式存在。有机汞化合物首先被有机汞裂解酶分解为Hg+和相应的有机基团,离子汞随后被还原成单质汞。汞及其它金属诸如铅、硒、砷等能被微生物甲基化。硒的甲基化产物毒性降低,但汞的甲基化产物则是剧毒的。六价铬能被细菌还原成为三价铬,高毒的As+能被微生物氧化成为As5+,更易于被Fe3+沉淀。6)土壤根际的富集和降毒根际微区是一个只有-4mm左右的区域,在该区域中,由于植物根系的存在,从而在物理、化学、生物特征方面有异于土体的现象,显著影响重金属在土壤中的活性和生物有效性。(1)根际氧化还原屏障形成许多重金属元素的溶解度是由氧化还原状态来决定的,还原态铁、锰离子比其氧化态离子的溶解度高,因此,当生长在还原性基质上的植物根际产生氧化态微环境时,土体中还原态离子穿越这一氧化区到达根表时,游离金属离子的活度由于被氧化成溶解度很低的氧化态而明显下降,从而降低了其毒害能力。反之,生长在氧化性基质上的植株根际由于根系和根际微生物呼吸耗氧,根系分泌物中含有还原性物质。土壤的还原条件将会影响变价金属元素的活性和有效性,如六价铬的还原去除,微生物的固定等。有研究表明,细菌细胞壁和原生质膜阴离子能结合溶液中的镉,但在好氧条件下又会释放回溶液中,在还原条件下则不发生镉的迁移。
jinyulan1985
(一)农作物籽实中重金属元素含量
在生态效应判别依据及试验体系部分已经知道,农作物籽实(可食部分)中元素含量是制定土壤环境质量标准的一个主要依据(夏家淇,1996),因为它是衡量人体每日摄入量的重要指标。例如,国际卫生组织(WHO)规定人体每周通过粮食摄入的Cd不能超过~。以一个成年人每周摄入粮食~计算,则粮食的Cd含量不能超过,这一限定值也就是我国现行的无公害食品卫生标准(GB15201—94)规定的Cd含量最高允许值。为了探讨根系土中重金属元素累积的生态效应,对各研究区内农作物籽实中重金属元素的含量进行了统计(表6-14至表6-17),并根据现行的相应食品卫生标准对所选择的大宗农作物,包括玉米、小麦和水稻的食品卫生质量状况进行了评价。
山西和黑龙江-吉林研究区玉米中重金属元素的平均含量、中位数以及最大值差异都很小,而且与小麦、水稻相比含量也很低(表6-14、表6-17)。山西和江苏研究区小麦中重金属元素含量统计结果表明(表6-14、表6-15),Cd含量差异明显。江苏研究区小麦中Cd平均含量为,明显高于山西研究区。除Cd以外,其他7个元素的平均含量、中位数、最大值的差异都不明显,基本处在相同的含量水平。江苏、浙江-湖南、黑龙江-吉林研究区水稻中重金属元素含量差异较玉米、小麦中大(表6-15、表6-16、表6-17),其中以Cd元素含量差异最大。浙江-湖南、江苏和黑龙江-吉林研究区水稻中Cd平均含量依次是、和。结合不同研究区农作物根系土中Cd含量状况分析,出现这种现象的原因之一是由于根系土中Cd元素累积程度的差异所致。在不同研究区之间,相同品种的农作物籽实中重金属元素平均含量的差异因农作物品种而异,其中以水稻中重金属元素含量差异最明显。这可能与各研究区农作物的不同基因型有关,更可能与研究区的自然景观条件以及由此决定的重金属元素活动特性有关。
表6-14 山西研究区农作物籽实中元素含量统计表
注:元素含量单位,Hg为μg/kg;其他元素含量单位为mg/kg。
表6-15 江苏研究区农作物籽实中元素含量统计表
注:元素含量单位,Hg为μg/kg;其他元素含量单位为mg/kg。
表6-16 浙江-湖南研究区农作物籽实中元素含量统计表
注:元素含量单位,Hg为μg/kg;其他元素含量单位为mg/kg。
表6-17 黑龙江-吉林研究区农作物籽实中元素含量统计表
注:元素含量单位,Hg为μg/kg;其他元素含量单位为mg/kg。
农作物籽实中重金属元素含量差异不仅表现在不同研究区之间,同时也表现在同一研究区的不同农作物之间。例如,山西研究区小麦籽实中As、Cd、Cu、Pb、Zn平均含量都明显高于玉米籽实,江苏研究区小麦籽实中Cd、Cu、Pb、Zn平均含量均高于水稻籽实,黑龙江-吉林研究区水稻籽实中As、Cd、Hg平均含量均高于玉米籽实。
(二)农作物食品卫生质量
表6-14至表6-17所示的只是各研究区农作物籽实中重金属元素的平均含量,并列出同一研究区不同农作物中重金属元素含量。上述统计及比较的结果只是从总体上了解了各研究区玉米、小麦、水稻等大宗农作物中重金属元素的含量状况,并不能说明农作物的食品卫生质量情况。要评价农作物籽实中重金属元素含量的食品卫生质量以及含量水平是否超出了食品卫生标准的限定值,是否对农作物的食用安全产生了影响,还需要对农作物籽实中重金属元素含量的食品卫生质量进行评估。试验研究过程中通过将农作物籽实中重金属元素含量与我国现行的食品卫生标准进行对比的方式,对农作物的食品卫生质量以及重金属元素含量超标情况进行了统计,并对出现超标现象的农作物和重金属元素进行了评价。
在我国现行农产品食品卫生标准中,As、Cd、Hg、Pb4个元素既有绿色食品卫生标准,又有无公害食品卫生标准。这两项标准中农作物的As、Cd、Hg、Pb4个元素含量的限定值存在差异,具体说是绿色食品卫生标准要求更高,相应的限定值低;无公害食品卫生标准要求相对低,相应的限定值高。可以根据这两项标准对农作物中相应元素含量是否超标进行判断,并对超标情况进行统计分析。目前还没有Cu、Zn、Cr等元素的绿色食品卫生标准和无公害食品卫生标准,只有国家食品卫生标准。因此,对农作物籽实中这几个元素含量超标情况统计只能依据相应的国家食品卫生标准(表6-18)。对于目前尚没有食品卫生标准的元素Ni,暂不做超标统计。为了便于对比分析,以下以每个重金属元素为主线,对各研究区大宗农作物的食品卫生质量状况进行介绍。
表6-18 国家食品卫生标准规定的农作物中重金属元素最高含量
注:元素含量单位为mg/kg;“—”表示尚没有相应的标准。
从表6-14至表6-17中可以看到,如果从各研究区农作物籽实中重金属元素平均含量来衡量,只有浙江-湖南研究区水稻籽实的Cd含量超过了绿色和无公害食品卫生标准;其他研究区农作物籽实中元素平均含量都没有超标现象出现。如果以农作物籽实中重金属元素的最高含量来衡量,出现的超标现象却比较普遍。例如山西研究区内小麦中的Pb、Cu和Zn;江苏研究区小麦中的Cd、Cu、Pb和Zn,水稻中的Cd、Hg和Pb;浙江-湖南研究区水稻中的Cd、Hg和Pb;黑龙江-吉林研究区水稻中的Cd、Hg和Pb。只有山西和黑龙江-吉林研究区的玉米不存在任何重金属元素超标问题。针对出现超标现象的Cd、Hg、Pb、Cu、Zn等元素,依据相应食品卫生标准,对各研究区农作物籽实中的超标情况进行了统计(表6-19至表6-22)。
表6-19 农作物籽实中Cd食品卫生质量统计
注:GS(绿色食品卫生标准),;NS(无公害食品卫生标准),;统计结果单位,%。
从表6-19中可见,采自山西研究区的玉米和小麦中Cd含量水平很低,全部样品中Cd含量均低于绿色食品卫生标准。山西研究区玉米和小麦样品中不存在Cd超标问题,这应该与该研究区农作物根系土中没有出现Cd的明显累积有关。黑龙江-吉林研究区的玉米同样也没有出现超过绿色食品卫生标准的现象;水稻样品中只有1件超过了绿色食品卫生标准,只是略高于标准的限定值(含量为),明显低于无公害食品卫生标准。因此,认为该研究区农作物Cd也几乎不存在食品卫生安全问题。有Cd超标现象的是江苏和浙江-湖南研究区,两个研究区Cd超标情况有所不同。江苏研究区水稻只有1件样品超过绿色食品卫生标准;小麦超过绿色食品卫生标准的比例达到,有1件样品中Cd含量超过了无公害食品卫生标准。这说明该研究区的小麦已经存在食品卫生安全隐患。相比较而言,在4个研究区中,浙江-湖南研究区水稻Cd超标现象最严重也更普遍,本研究所采集的样品中有超出了无公害食品卫生标准,低于绿色食品卫生标准的样品还不到一半。出现Cd超标样品主要集中在位于湘江沿岸的长沙、株洲、湘潭地区,这一带也是土壤Cd
累积量最显著的地区。相比湖南-浙江研究区内Cd超标率要低得多。表6-20是各研究区农作物籽实中Hg含量统计结果。从中可以看出,山西研究区玉米和小麦两种农作物都不存在Hg超标问题,所有样品中Hg含量都低于绿色食品卫生标准的限量值。类似情况还出现在江苏研究区小麦和黑龙江-吉林研究区玉米中。浙江-湖南和黑龙江-吉林的水稻尽管有部分样品中Hg含量超出了绿色食品卫生标准,但出现超标样品的比例都低于10%。黑龙江-吉林研究区有1件样品中Hg含量超过了无公害食品卫生标准(超标率为)。与其他研究区相比,江苏研究区水稻籽实中Hg含量超标现象比较严重,与无公害食品卫生标准相比超标率为,与绿色食品卫生标准相比超标率达到样品总数的25%。从区域分布来看,水稻中Hg含量比较高的样品主要分布在苏州市北郊。虽然水稻籽实中Hg含量所处的含量区间还不至于影响食用,但应该引起足够的重视。
表6-20 农作物籽实中Hg食品卫生质量统计
注:GS(绿色食品卫生标准),;NS(无公害食品卫生标准),;统计结果单位,%。
各研究区农作物籽实中Pb食品卫生质量统计结果见表2-21。从中可见,不同农作物籽实中Pb的食品卫生质量差异明显。其中小麦籽实中Pb的食品卫生质量明显不如玉米和水稻。例如,在山西研究区,在根系土中Pb含量基本无差异的情况下,玉米籽实中Pb含量明显低于绿色食品卫生标准限量值,平均含量只有;小麦中则有14%超过了绿色食品卫生标准,还有超过了无公害食品卫生标准。几乎同样的现象也出现在江苏研究区,小麦中超过绿色食品卫生标准的比例达11%,而水稻中只有。浙江-湖南和黑龙江-吉林研究区都只有1件水稻样品中Pb含量超过了绿色食品卫生标准。根据上述试验结果分析,小麦籽实中的Pb含量可能与体外吸收有关(陈学泽等,1997;薛姣亮等,2000;鲁敏等,2003;Charalampides et al.,2002)。
表6-21 农作物籽实中Pb食品卫生质量统计
注:GS(绿色食品卫生标准),;NS(无公害食品卫生标准),;统计结果单位,%。
表6-22是各研究区农作物籽实中Cu、Zn食品卫生质量状况统计结果。之所以将这两个元素放在一起讨论,是因为对于农作物生长发育和食品卫生质量而言,Cu、Zn均具有双侧阈特性,即含量适中时对农作物生长发育有益,人体也需要通过粮食作物摄入适量的Cu、Zn以维持正常的生理代谢功能;但是当土壤中Cu、Zn元素含量过高时,会给农作物造成毒害,也会给人体健康带来危害。另外,与前述其他元素不同,现行的食品卫生标准中Cu、Zn只有国家食品卫生标准可供参考,而没有绿色食品卫生标准或无公害食品卫生标准。在这种情况下,农作物中Cu、Zn元素的食品卫生质量只能依据国家食品卫生标准进行评价。
表6-22 农作物籽实中Cu、Zn食品卫生质量统计
注:GS(绿色食品卫生标准),;NS(无公害食品卫生标准),;统计结果单位,%。
从表6-22中可见,与Pb的情况类似,Cu、Zn的超标现象也主要出现在山西和江苏研究区的小麦籽实中,以山西研究区更为明显。在山西研究区,有14%的小麦样品中Zn含量超过食品卫生标准,的样品中Cu含量超过食品卫生标准。江苏研究区Zn含量超过食品卫生标准的小麦占,Cu含量超过食品卫生标准的为,即有一件样品中Cu含量超标。除小麦以外,其他农作物中Cu、Zn含量均低于各自的食品卫生标准,没有出现含量超标现象。
从以上所述试验结果中不难看出,各研究区农作物籽实中都存在着程度不同的重金属元素含量超标情况,即存在着食品卫生隐患。在上一节农作物根系土中重金属元素含量试验结果介绍中已经知道,各研究区农作物根系土中均存在着程度不同的重金属元素累积现象。综合这两节中所述的试验结果,认为农作物中某些重金属元素含量超标与农作物根系土中重金属元素累积有关似乎是顺理成章的,然而这一认识是否成立尚需要试验结果来验证。
东华理工大学机电学院 毕 业 设计论文 任 务 书 东华理工大学 学院(部) 专业 班 毕业设计论文题目 智能家居安防系统设计 专题题目 家居安防设计
重金属污染的危害:镉:导致高血压,引起心脑血管疾病;破坏骨骼和肝肾,并能引起肾功能衰竭。汞:食入后直接沉入肝脏,对大脑、神经、视力破坏极大。天然水每升水中含0.
要求:重金属及砷盐的限度考察,即通过有机破坏或不经过有机破坏>规定方法比较试验;列出考察的结果和数据.重金属考察结果在10ppm以下,正文中不列入检查要求,在1
关于重金属对蔬菜的污染问题研究与治理方法论文 摘要:近些年,随着全球经济化的迅速发展,含有重金属的污染物通过各种途径进入农业生态环境中,使土壤和水体受到污染。文
金属材质硬度和性质在“机械设计手册”和“金属材料手册”都可以可以查到。