玲玲--00
协同过滤(collaborative filtering)算法是最经典、最常用的推荐算法。其基本思想是收集用户偏好,找到相似的用户或物品,然后计算并推荐。 基于物品的协同过滤算法的核心思想就是:给用户推荐那些和他们之前喜欢的物品相似的物品。主要可分为两步: (1) 计算物品之间的相似度,建立相似度矩阵。 (2) 根据物品的相似度和用户的历史行为给用户生成推荐列表。 相似度的定义有多种方式,下面简要介绍其中几种:其中,分母 是喜欢物品 的用户数,而分子 是同时喜欢物品 和物品 的用户数。因此,上述公式可以理解为喜欢物品 的用户中有多少比例的用户也喜欢物品 。 上述公式存在一个问题。如果物品 很热门, 就会很大,接近1。因此,该公式会造成任何物品都会和热门的物品有很大的相似度,为了避免推荐出热门的物品,可以用下面的公式:这个公式惩罚了物品 的权重,因此减轻了热门物品会和很多物品相似的可能性。 另外为减小活跃用户对结果的影响,考虑IUF(nverse User Frequence) ,即用户活跃度对数的倒数的参数,认为活跃用户对物品相似度的贡献应该小于不活跃的用户。为便于计算,还需要进一步将相似度矩阵归一化 。其中 表示用户 对物品 的评分。 在区间 内,越接近1表示相似度越高。 表示空间中的两个点,则其欧几里得距离为: 当 时,即为平面上两个点的距离,当表示相似度时,可采用下式转换: 距离越小,相似度越大。 一般表示两个定距变量间联系的紧密程度,取值范围为[-1,1] 其中 是 和 的样品标准差 将用户行为数据按照均匀分布随机划分为M份,挑选一份作为测试集,将剩下的M-1份作为训练集。为防止评测指标不是过拟合的结果,共进行M次实验,每次都使用不同的测试集。然后将M次实验测出的评测指标的平均值作为最终的评测指标。 对用户u推荐N个物品(记为 ),令用户u在测试集上喜欢的物品集合为 ,召回率描述有多少比例的用户-物品评分记录包含在最终的推荐列表中。准确率描述最终的推荐列表中有多少比例是发生过的用户-物品评分记录。覆盖率反映了推荐算法发掘长尾的能力,覆盖率越高,说明推荐算法越能够将长尾中的物品推荐给用户。分子部分表示实验中所有被推荐给用户的物品数目(集合去重),分母表示数据集中所有物品的数目。采用GroupLens提供的MovieLens数据集, 。本章使用中等大小的数据集,包含6000多用户对4000多部电影的100万条评分。该数据集是一个评分数据集,用户可以给电影评1-5分5个不同的等级。本文着重研究隐反馈数据集中TopN推荐问题,因此忽略了数据集中的评分记录。 该部分定义了所需要的主要变量,集合采用字典形式的数据结构。 读取原始CSV文件,并划分训练集和测试集,训练集占比,同时建立训练集和测试集的用户字典,记录每个用户对电影评分的字典。 第一步循环读取每个用户及其看过的电影,并统计每部电影被看过的次数,以及电影总数;第二步计算矩阵C,C[i][j]表示同时喜欢电影i和j的用户数,并考虑对活跃用户的惩罚;第三步根据式\ref{similarity}计算电影间的相似性;第四步进行归一化处理。 针对目标用户U,找到K部相似的电影,并推荐其N部电影,如果用户已经看过该电影则不推荐。 产生推荐并通过准确率、召回率和覆盖率进行评估。 结果如下所示,由于数据量较大,相似度矩阵为 维,计算速度较慢,耐心等待即可。 [1]. [2]. 推荐系统与深度学习. 黄昕等. 清华大学出版社. 2019. [3]. 推荐系统算法实践. 黄美灵. 电子工业出版社. 2019. [4]. 推荐系统算法. 项亮. 人民邮电出版社. 2012. [5]. 美团机器学习实践. 美团算法团队. 人民邮电出版社. 2018.
Lucky小钰
综述类: 1、Towards the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions。最经典的推荐算法综述 2、Collaborative Filtering Recommender Systems. JB Schafer 关于协同过滤最经典的综述 3、Hybrid Recommender Systems: Survey and Experiments 4、项亮的博士论文《动态推荐系统关键技术研究》 5、个性化推荐系统的研究进展.周涛等 6、Recommender systems L Lü, M Medo, CH Yeung, YC Zhang, ZK Zhang, T Zhou Physics Reports 519 (1), 1-49 ( ) 个性化推荐系统评价方法综述.周涛等 协同过滤: factorization techniques for recommender systems. Y Koren collaborative filtering to weave an information Tapestry. David Goldberg (协同过滤第一次被提出) Collaborative Filtering Recommendation Algorithms. Badrul Sarwar , George Karypis, Joseph Konstan .etl of Dimensionality Reduction in Recommender System – A Case Study. Badrul M. Sarwar, George Karypis, Joseph A. Konstan etl Memory-Based Collaborative Filtering. Kai Yu, Anton Schwaighofer, Volker Tresp, Xiaowei Xu,and Hans-Peter Kriegel systems:a probabilistic analysis. Ravi Kumar Prabhakar recommendations: item-to-item collaborative filtering. Greg Linden, Brent Smith, and Jeremy York of Item-Based Top- N Recommendation Algorithms. George Karypis Matrix Factorization. Ruslan Salakhutdinov Decompositions,Alternating Least Squares and other Tales. Pierre Comon, Xavier Luciani, André De Almeida 基于内容的推荐: Recommendation Systems. Michael J. Pazzani and Daniel Billsus 基于标签的推荐: Recommender Systems: A State-of-the-Art Survey. Zi-Ke Zhang(张子柯), Tao Zhou(周 涛), and Yi-Cheng Zhang(张翼成) 推荐评估指标: 1、推荐系统评价指标综述. 朱郁筱,吕琳媛 2、Accurate is not always good:How Accuacy Metrics have hurt Recommender Systems 3、Evaluating Recommendation Systems. Guy Shani and Asela Gunawardana 4、Evaluating Collaborative Filtering Recommender Systems. JL Herlocker 推荐多样性和新颖性: 1. Improving recommendation lists through topic diversification. Cai-Nicolas Ziegler Sean M. McNee, Joseph Lausen Fusion-based Recommender System for Improving Serendipity Maximizing Aggregate Recommendation Diversity:A Graph-Theoretic Approach The Oblivion Problem:Exploiting forgotten items to improve Recommendation diversity A Framework for Recommending Collections Improving Recommendation Diversity. Keith Bradley and Barry Smyth 推荐系统中的隐私性保护: 1、Collaborative Filtering with Privacy. John Canny 2、Do You Trust Your Recommendations? An Exploration Of Security and Privacy Issues in Recommender Systems. Shyong K “Tony” Lam, Dan Frankowski, and John Ried. 3、Privacy-Enhanced Personalization. Alfred 4、Differentially Private Recommender Systems:Building Privacy into the Netflix Prize Contenders. Frank McSherry and Ilya Mironov Microsoft Research, Silicon Valley Campus 5、When being Weak is Brave: Privacy Issues in Recommender Systems. Naren Ramakrishnan, Benjamin J. Keller,and Batul J. Mirza 推荐冷启动问题: Boltzmann Machines for Cold Start Recommendations. Asela Preference Regression for Cold-start Recommendation. Seung-Taek Park, Wei Chu Cold-Start Problem in Recommendation Systems. Xuan Nhat and Metrics for Cold-Start Recommendations. Andrew I. Schein, Alexandrin P opescul, Lyle H. U ngar bandit(老虎机算法,可缓解冷启动问题): 1、Bandits and Recommender Systems. Jeremie Mary, Romaric Gaudel, Philippe Preux 2、Multi-Armed Bandit Algorithms and Empirical Evaluation 基于社交网络的推荐: 1. Social Recommender Systems. Ido Guy and David Carmel A Social Networ k-Based Recommender System(SNRS). Jianming He and Wesley W. Chu Measurement and Analysis of Online Social Networks. Referral Web:combining social networks and collaborative filtering 基于知识的推荐: 1、Knowledge-based recommender systems. Robin Burke 2、Case-Based Recommendation. Barry Smyth 3、Constraint-based Recommender Systems: Technologies and Research Issues. A. Felfernig. R. Burke 其他: Trust-aware Recommender Systems. Paolo Massa and Paolo Avesani
运用对比,必须对所要表达的事物的矛盾本质有深刻的认识。对比的两种事物或同一事物的两个方面,应该有互相对立的关系,否则是不能构成对比的。
小事问百度,大事问谷歌
随着现代信息技术和 网络技术 的飞速发展,电子商务也在全球市场中迅速发展起来。下面是我为大家整理的电子商务 毕业 论文,供大家参考。
协同过滤(collaborative filtering)算法是最经典、最常用的推荐算法。其基本思想是收集用户偏好,找到相似的用户或物品,然后计算并推荐。
是真的,前期要收集很多资料,看一些文献,然后整理。