爱上大碴粥
通过对课程塑料模具制造的过程我了解了以下下内容:1、产品设计;2、模具设计(用软件分模,选用模架及标准件并设计滑块);3、工艺安排;4、按工艺顺序进行加工;5、钳工装配(主要配分型面);6、试模。下面主要讲述上面每个过程的重点和要注意的问题。 、产品设计 这个过程中我们应注意的问题有:不能随意改变产品的结构(用户特殊要求除外);不能随意改变产品大小(用户特殊要求除外);在交图前应检查各尺寸是否正确及是否注明产品材料。 、模具设计 (一)首先必须要拟定模具结构形式: A、分型面位置确定:分型面应选在塑件的最大截面处;不影响塑件外观质量,尤其是对外观有明确要求的塑件,更要注意分型面对外观影响;有利于保证塑件的精度要求;有利于模具加工,特别是型腔加工;有利于浇注系统、排气系统、冷却系统的设置;便于塑件的脱模,尽量使塑件开模时留在动模一边(有的塑件需要定模推出的例外);尽量减小塑件在合模平面上的投影面积,以减小所需锁模力;便于嵌件的安装;长型芯应置于开模方向。 B、型腔数量的确定:型腔数量主要是根据塑件的质量、投影面积、几何形状(有无抽心)、塑件精度、批量大小以及经济效益来确定,这些条件互相制约的,在确定设计方案时,须进行协调,以保证满足其主要条件。 C、型腔排列方式、模具结构形式的确定:型腔的排列涉及模具尺寸、浇注系统的设计、浇注系统的平衡、抽芯机构的设计、镶件及型芯的设计以及温度调节系统的设计。以上这些问题又与分型面及浇口的位置有关,所以在具体设计过程中,要进行必要的调整,以达到比较完善的设计结构。1)中大型塑件或带有侧向分型与抽芯(几个方向分型或抽芯)、且抽芯机构在动模时的小型精密塑件采用单型腔单分型面模具;2)塑件外观质量、尺寸精度要求高而采用点浇口时,用单型腔多分型面模具;3)尺寸精度要求一般的中小型塑件用多型腔单分型面或多型腔多分型面模具。 (二)塑料模具钢的选用: A、塑料模具钢的性能要求(1)要求材料有较高的硬度、好的耐磨性,其型面硬度应为30~60HRC,淬硬性>55HRC,有足够的硬化深度,材料中心部位有足够强韧性,以免脆断、塑性变形等。(2)要求材料具有一定的抗热性,能在150~250 C的温度下长期工作,且不氧化、不变形,尺寸稳定性良好。(3)要求材料具有一定的耐腐蚀性。(4)要求材料的焊接性能、锻造工艺性能良好。 B.、塑料模具钢的选用 冷压成型塑料模具多以低碳钢为主,型号可选用20、20Cr、12CrNi3A、40rC或DTI等。切削成型塑料模具,多以调质钢为主,先进行调质处理后再后再加工,型号可选用40、50、3Cr2Mo、4Cr3MoSiV、5CrNiMo、4Gr5MoSiV1或 4Cr5W2SiV1等。磨损强烈的热塑性和热固性塑料模具选用冷作模具钢制造,如Cr12、9Mn2V、Cr6 WV或7 Cr Mo NiMo等。高级塑料模具可选用超低碳马氏体时效钢,如18Ni(250)、18Ni(300)或18Ni(350)等。 (三)模架及标浇口设置所要考虑的因素: A、浇口的设置应达到平衡充模 B、浇口应位于厚壁处 C、浇口应远离薄壁特征 D、浇口的设置应实现同向流动 E、必要时增加浇口以减少充模压力 F、增加浇口以防止过保压 G、所用模具的类型,是2板式还是3板式模具? H、热流道还是冷流道,或者混合流道 I、所希望的浇口类型,如边缘浇口、潜伏式浇口等 J、由于制件的功能而对浇口位置的限制 没有固定的原则来决定浇口应该或不应该设在制件的什么位置。设计师不同,他所认可的浇口最佳位置可能不同。本节将讨论浇口位置设计的一些原则,与制件充模流动分析相关的人员应对这些原则予以重视。 (四)模架及准件的选用: 在设计模具时,应尽可能地选用标准模架和标准件(包括通用标准件及模具专用标准件两大类,通用标准件如紧固件等,模具专用标准件如定位圈、浇口套、推杆、推管、导柱、导套、模具专用弹簧、冷却及加热元件),因为标准件有很大一部分随时可在市场上买到,这对缩短制造周期,降低制造成本极其有利。模架尺寸确定之后,对模具有关零件要进行必要的强度或刚度计算,以校核所选模架是否适当,尤其是对大型模具,这一点尤为重要。 、工艺安排前我们应先对塑料成型工艺的可行性分析: (1)接受设计任务(塑件产品零件工作图,若是实物零件,应绘制成二维工程图),在产品零件工作图上应注明所用塑料的品种、批量大小、尺寸精度与技术条件,产品的功用及工作条件。 (2)对产品图纸或提供的样品进行详细地分析和消化,注意检查以下项目。 A、产品尺寸精度及其图纸尺寸的正确性; B、脱模斜度是否合理; C、塑件厚度及其均匀性; D、塑料种类及其收缩率; E、塑件表面颜色及表面质量要求。 (3)了解该塑件材料的机械性能和物理性能,以及与注射工艺有关的参数。 (4)审核塑件的成型工艺性,讨论壁厚、肋板、圆角、表面粗糙度、尺寸精度、表面修饰、脱模斜度和嵌件安放的可行性,如果产品结构设计的成型工艺性不佳,可与设计者商榷,在不影响产品性能的前提下,由设计者对产品结构进行修改,以满足注塑成型工艺的需要。 (5)计算塑件的体积和质量。 、按工艺顺序进行机加。在模塑公司模具加工中心,加工模具主要有以下几种方法:车床加工、铣床加工、磨床加工、CNC加工、放电加工、线切割加工等。 几种模具加工方法的比较: 1)、车床加工 加工精度: 加工特性:适合孔、台阶、槽等一系列成型加工,可加工范围比较广。 2)、铣床加工 加工精度: 加工特性:适合孔、台阶、槽等一系列成型加工。 3)、磨床加工 加工精度: 加工特性:适合圆弧、斜面、槽等精密成型加工 4)、CNC加工 加工精度: 加工特性:适合公母模座、3D模仁及各类电极的粗精加工。 5)、放电加工 加工精度: 加工特性:适合于加工槽类、孔类及复杂成型类工件,可镜面加工。 6)、线切割加工 加工精度: 加工特性:加工精度高、光洁性好、操作方便,可加工上下异形工件。 、在模具制造过程中装配主要由钳工来完成 装配技术分为“分离”和“集成”两种类型。集成装配:A、焊接 B、固定 C、粘接 D、嵌入技术 E、90度角卡扣;分离装配包括: A、小于90度角卡扣 B、螺扣装配 C、中心装配 D、压机装配。压件装配:压件装配可以使塑料组件在最低的成本下进行高强度装配。例如对卡扣装配来说,由于应力松弛,高压装配的拉力强度随着时间的流逝而减少(见图3)。设计计算必须把它考虑进去。另外,必须作使用温度周期变化的试验,以保证设计的可行性;螺纹装配:螺纹装配由分离型、组合型螺杆或整体螺杆嵌件的运用组成。材料的挠曲模量给螺件的合理装配提供了指导。 例如, 带螺纹的螺丝的弯曲模量可以达到2800Mpa。如果需要使用公制的螺丝,或者螺纹装配需要多次来完成,这就需要采用金属的细纹嵌件。 、试模前我们应该了解该塑料件的机械性能和物理性能,以及与注射工艺有关的相关参数。公司里用的塑料最多就是聚丙烯(PP)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)。除此之外,我们还要确定成型设备。 (1)常用塑料的特性: (一)聚丙烯(PP) 聚丙烯(PP)作为热塑塑料聚合物于1957年开始商品化生产,是有规立构聚合物中的第一个。其历史意义更体现在,它一直是增长最快的主要热塑性塑料,1991年它的世界总产量达到240亿磅。它在热塑性塑料领域内有十分广泛的应用,特别是在纤维和长丝、薄膜挤压、注塑加工等方面。 化学和性质 PP是以金属有机有规立构催化剂(Ziegler-Natta型),使丙烯单体在控制的温度和压力条件下合成的。因所用催化剂和聚合工艺不同,所得聚合物的分子结构有三种不同类型的立体化学结构,数量也不一样。这三种结构是指等规聚合物、间规聚合物和无规聚合物。在等规聚丙烯(最常见的商品形式)中,甲基原子团都处在聚合物骨架的同一侧,这一结构很容易形成结晶态。等规形式的结晶性赋予它良好的抗溶剂和抗热性能。在前十年期间所用的催化剂技术使非等规异构体的生成达到最少程度,消除了对无价值的无规组分进行分离的必要性,简化了生产步骤。 (二)苯乙烯树脂ABS 三元聚合物ABS从本世纪40年代开始商业化,销量逐年增长,现已成为全球销量最大的工程热塑性塑料,仅美国的销量就于1989年超过了12亿磅。在大宗商品塑料与高性能工程热塑性塑料之间,ABS占据了独特的“过渡”聚合物的位置。 化学和性质 ABS的多能性来自于它的三个单体结构单元——丙烯睛、丁二烯和苯乙烯。每个组分都为最终聚合物提供了一套不同的有用的性能。丙烯睛主要提供了耐化学性和热稳定性;丁二烯提供了初度和冲击强度;苯乙烯组分则为ABS提供了硬度和可加工性。 有三种生产工艺——乳液法、连续本体法或悬浮法,任一种工艺方法所制得的ABS原料中的苯乙烯含量均为50%甚至更高。通常至少两种工艺结合使用,以使最终产物最佳化。ABS树脂属于两相体系:苯乙烯一丙烯睛共聚物(SAN)为连续相,丁二烯衍生橡胶为弹性体分散相。 实际上还有少量苯乙烯和丙烯睛在丁二烯橡胶上发生共聚合反应(接枝),本来不相容的硬SAN和橡胶相容起来。因此,人们可把ABS看作是第一个在商业上取得成功的聚合物合金之一。 (三)丙烯酸-苯乙烯-丙烯睛(简称ASA) ASA聚合物是无定形材料,可以采用挤塑和注塑加工制成对气候影响有极好抵抗力的产品。三元共聚物ASA的机械性能通常类似于ABS树脂,不同的是ASA的性能受室外气候的影响要比ABS树脂小得多。 化学和性能 三元共聚物ASA可以用拥有专利权的专利反应工艺,或接枝工艺来生产。在反应法中,ASA是通过在苯乙烯和丙烯睛(SAN)的聚合反应过程中接技一种丙烯酸酯弹性体而制得,弹性体细粉末均匀地分散入并接校在SAN分子链上。 ASA杰出的耐候性来自于丙烯酸酯弹性体。对许多塑料而言,在日光辐射特别是在光谱的紫外线一端辐射与大气中氧气共同作用下,会发生脆化和变黄。ASA部件发生这种变化所需的时间比其它塑料长得多。 (2)选择成型设备: 根据成型设备的种类来进行模具,因此必须熟知各种成型设备的性能、规格、特点。例如对于注射机来说,在规格方面应当了解以下内容:注射容量、锁模压力、注射压力、模具安装尺寸、顶出装置及尺寸、喷嘴孔直径及喷嘴球面半径、浇口套定位圈尺寸、模具最大厚度和最小厚度、模板行程等,具体见相关参数。 要初步估计模具外形尺寸,判断模具能否在所选的注射机上安装和使用。 通过这么长时间的学习,运用塑料模具设计、机械制图、公差与技术测量、机械原理及零件、模具材料及热处理、模具制造工艺等先修课程的知识,分析和解决塑料模具设计问题,进一步巩固、加深和拓宽所学的知识;使我逐步树立正确的设计思想,增强创新意识和竞争意识,基本掌握塑料模具设计的一般规律,培养出了分析问题和解决问题的能力;通过计算、绘图和运用技术标准、规范、设计手册等有关设计资料,进行塑料模具设计全面的基本枝能训练,为毕业打下一个良好的基础。
红泥娃娃
控制改性聚丙烯的收缩率对聚丙烯取代传统的工程塑料具有非常重要的意义。引起聚丙烯收缩的主要原因:结晶收缩和取向收缩。聚丙烯作为高结晶聚合物,在冷却过程中会发生结晶,聚丙烯分子链结晶紧密排列,结构变得规整有序,宏观表现为较大的体积收缩。收缩率的大小与结晶度呈正相关,因此控制聚丙烯的结晶度成为控制降低聚丙烯收缩率的关键。取向也是影响聚丙烯收缩的主要原因。取向包括分子链、链段以及结晶聚合物的晶片、晶带沿特定方向的择优排列。与熔体流动方向一致的取向结构,会在一定程度上回到卷曲状态,在取向方向上制品尺寸将会因卷曲收缩而减小,这就是取向收缩。取向收缩与内应力有关,内应力越大则取向收缩越大。一般而言,取向收缩在取向方向上较为显著,取向收缩与取向程度成正比。
各种不同的无机填料,如玻璃纤维、滑石粉、碳酸钙、云母粉、硅灰石、硫酸钡、石墨、碳纤维等,被应用于聚丙烯的填充增强改性;弹性体如POE和EPDM等,聚乙烯如HDPE和LLDPE对聚丙烯进行增韧改性,改善其综合性能。填充、增韧、增强等技术是目前聚丙烯主要的改性方法,也成为了控制聚丙烯收缩率的重要方法。加入无机填料,通过无机填料的结构来抵抗聚丙烯的收缩。另一种是加入一个组分,使得两个组分的分子链相互缠绕,改变聚丙烯的结晶,达到控制聚合物收缩率的目的。
1共混改性
共混改性是指在原来的塑料体系中,利用体系之间的相容性或反应共混原理,通过各种混合方法混进一种或多种塑料或弹性体,最后形成宏观均一、微观上相分离的新型材料。用于PP共混改性的材料很多,如热塑性弹性体POE、EPDM、SBS等,以及聚乙烯HDPE和LLDPE。在聚丙烯中加入相应的塑料或弹性体,外来的分子链会不同程度地扰乱聚丙烯的结晶,降低聚丙烯的收缩率。
王爱东等 [1] 将POE与PP共混,研究了不同种类的POE对PP收缩率的影响,结果表明乙烯-辛烯共聚物比乙烯-丁烯共聚物对聚丙烯结晶度的影响更大,表现出更低的收缩率。这是由于POE的侧基链段越长,对PP的分子链的缠绕作用越强,限制PP结晶能力也越强,因此收缩率更小。
另外,宁凯军等 [2] 也研究了POE和POP(丙烯基弹性体)对滑石粉改性聚丙烯收缩率的影响。两种共混体系中,随着弹性体用量的增加,体系的收缩率都逐渐下降。在质量分数为20%的情况下,POE的改性效果优于POP,共混体系的收缩率下降到,原因可能归因于它们与PP基体之间的相容性,丙烯基弹性体POP与PP之间的相容性优于POE,所以相容性越好对PP收缩率的降低程度就越小,分散相越复杂对降低PP收缩率的贡献就越大。
罗忠富等 [3] 以滑石粉为填料,以POE和PE为改性剂,研究了改性剂用量对收缩率的影响,结果表明:LLDPE对收缩率的影响明显较HDPE大,可能归因于LLDPE对聚丙烯的结晶行为影响较大。随着POE用量的增加,PP的收缩率逐渐降低,当POE添加量为15%时,PP的收缩率降至左右。
李荣群等 [4] 在专利公布了一种高光泽、低收缩的改性聚丙烯复合材料及其制备方法,采用低收缩的聚苯乙烯和聚丙烯合金化制备出了低收缩改性聚丙烯,但是由于PP与PS的结构差异很大,相容性较低,易出现分层,导致产品的稳定性差,同时因为PS与PP的耐候性均较差,所以耐候性较低。
2填充改性
用于PP填充改性的无机粉体主要有滑石粉、碳酸钙、硫酸钡、云母粉、硅灰石等。无机粉体不仅降低了成本,更加提升了材料的综合性能,如硬度、强度、热变形温度等,而对PP收缩率的影响也较为明显,其影响主要有三个方面:一是无机填料本身不收缩,它的加入从整体上降低了PP的成型收缩率;二是填料的加入降低了PP的结晶度,从而降低了收缩率;三是微细无机填料的加入,起到一种成核剂的作用,改变了聚丙烯的形态,防止了较大球晶的形成。
马旭辉等 [5] 研究了不同形状的无机填料对PP收缩率的影响因素,研究表明,矿粉能很好地限制复合材料的收缩,片状滑石粉和针状硅灰石对PP收缩率的限制作用比粒状碳酸钙更明显,单一矿物的粒径越小,复合材料的收缩率就越小。复合材料的收缩率随着矿物填料的填充量的增加而减小。当滑石粉的质量分数为30%时,收缩率为%。
杨俪辰 [6] 也研究了无机刚性粒子对改性聚丙烯收缩率的影响,不同的填料对改性PP的收缩率的影响不同,这主要是由于不同填料的结构不同而造成的差异。滑石粉和云母粉均为片状结构,在成型过程中,分子链会随着滑石粉和云母粉的片状层呈一定取向排列,片状结构限制了取向收缩,硅灰石属于针状结构,在成型过程中取向排列程度比较小,所以对收缩率的影响程度要小于滑石粉,而碳酸钙属于粒状结构,在成型过程中分子链也不会发生取向,因此对收缩率的影响也相对要小。
周春怀等 [7] 为提高材料刚性和降低收缩率,采用无机填料增强的方法,先用活化超细重质碳酸钙和滑石粉复合增强的方法,结论如下:单独用20%滑石粉和碳酸钙时,材料的收缩率分别是和,而当用10%滑石粉和10%碳酸钙复合填充时,收缩率降到,这主要是由于无机填料之间的协同效应。
刘朝富等 [8] 在研究滑石粉对聚丙烯/滑石粉复合材料收缩率的影响时,发现随着滑石粉用量的增加,材料的收缩率逐渐降低;在相同条件下,滑石粉的粒度越小,材料的收缩率越低。将两种不同粒度的滑石粉复配得出如下结论:在总添加量为,两种滑石粉之间的比例为1:2时,材料的收缩率最低,达到。当为单一的粗粒子或细粒子时, 粒子间堆砌出现较大的缝隙, 形成所谓的“空洞效应”,堆积密度变小;粗粒子形成更大的空穴,材料在成型时收缩率较大。而当粗细两种粒子复配时, 粗粒子间的缝隙由细粒子来填补,形成所谓的“二次填充效应”,填料的密实度变大,整体收缩率降低。
张新亚等 [9] 在聚丙烯基体中引入粉状聚乙烯和无机填料滑石粉复配,同时侧喂加入钙盐晶须,粉状聚乙烯明显改善了无机填料在体系中的分散能力,进而提高了聚丙烯复合材料的流动性;采用粒径较小的填料改善了材料冲击韧性不足的缺点。通过侧喂料的方式加入钙盐晶须保持了原有的长径比特性,充分发挥了钙盐晶须降低收缩率的能力。
3增强改性
玻璃纤维对聚丙烯改性料成型收缩率的影响最大。当玻璃纤维的含量达到30%时以上时,其聚丙烯改性料的成型收缩率从下降至,而且表面处理过的玻纤对成型收缩率影响大于未进行处理的玻纤。玻纤的加入一方面破坏了聚丙烯的结晶度,从而影响收缩率,更重要的是玻璃纤维限制了聚丙烯的结晶收缩。
陈延安等 [10] 在研究 汽车 保险杠专用料时采用短切扁平玻璃纤维替代了部分超细滑石粉,不仅显著提高了聚丙烯复合材料的刚性,同时显著降低了材料的收缩率和后收缩率。而且由于扁平玻璃纤维的截面呈现扁平状,纤维整体呈现类似滑石粉的片状结构,因此流动性远高于通常的圆形截面玻璃纤维,制件表面没有浮纤,而且注塑过程中在制件内部的分布趋向于各向同性,也不会出现一般玻纤出现的翘曲现象。
展望
低收缩改性聚丙烯由于其优异的性能,逐渐被应用于现代工业。通过选择合适的原料,增韧、填充、增强等改性方法,不同低收缩率的改性聚丙烯实现了可控制备。为了将低收缩改性聚丙烯应用于更多的领域,对改性聚丙烯有了高光、高流动性、高硬度、抗静电、高耐热、高抗冲等特殊要求,这也将继续成为技术工作者今后的研发方向。
参考文献
[1] 王爱东, 杨霄云, 肖鹏, 等. 回收聚丙烯/滑石粉/POE复合材料收缩率研究[J]. 合成材料老化与应用, 2014 (4): 5-8.
[2] 宁凯军, 阳范文, 肖鹏, 等. 聚丙烯/弹性体/滑石粉三元共混体系的尺寸收缩与性能研究[J]. 工程塑料应用, 2011, 39(7): 8-11.
[3] 罗忠富, 周英辉, 黄达. 改性聚丙烯材料收缩率的研究[J]. 塑料工业, 2009, 37(A02): 42-44.
[4] 李荣群, 任东方, 安峰, 等. 一种高光泽、低收缩的改性聚丙烯复合材料及其制备方法[P], 中国, CN102250413, 2011-11-23.
[5] 马旭辉, 邱能兴, 韩静. 矿物填充聚丙烯复合材料收缩率影响因素的研究[J]. 塑料工业, 2013, 41(12): 69-71.
[6] 杨俪辰. 汽车 用改性聚丙烯收缩率的影响因素探讨[J]. 价值工程, 2014, 33(18): 289-290.
[7] 周春怀, 杨军忠. 微型 汽车 仪表板专用料研制[J]. 中国塑料, 1996, 10(6): 52-56.
[8] 刘朝福, 李静. 滑石粉对聚丙烯/滑石粉复合材料收缩率的影响[J]. 塑料 科技 , 2014, 42(8): 80-82.
[9] 张新亚, 张鹰, 张祥福, 等. 一种高流动、高韧性、低收缩率填充改性聚丙烯材料[P]. 中国, CN101759934A, 2010-06-30.
[10] 陈延安, 李国明, 程文超, 等. 一种低收缩率 汽车 保险杠专用聚丙烯复合物及其制备方法[P]. 中国, CN102911431A, 2013-02-06.
秉诚装饰
聚丙烯(PP)作为热塑塑料聚合物在塑料领域内有十分广泛的应用,因所用催化剂和聚合工艺不同,所得聚合物性能,用途也不同。PP有很多有用的性能,但还缺乏固有的韧性,特别是在低于其玻璃化温度的条件下。然而,通过添加冲击改性剂,可以提高其抗冲击性能。 1. PP均聚物 聚丙烯(PP)作为热塑塑料聚合物于1957年开始商品化生产,是有规立构聚合物中的第一个。其历史意义更体现在,它一直是增长最快的主要热塑性塑料,2004年它的全国总产量达到300万吨。它在热塑性塑料领域内有十分广泛的应用,特别是在纤维和长丝、薄膜挤压、注塑加工等方面。 化学和性质 PP是在金属有机有规立构催化剂(Ziegler-Natta型),如δ-TiCl3-(C2H5)2AlCl或TiCl3-(C2H5)3Al(效率300~900克聚丙烯/克TiCl3)作用下,使丙烯单体在控制的温度和压力条件下合成的。因所用催化剂和聚合工艺不同,所得聚合物的分子结构有三种不同类型的立体化学结构,数量也不一样。这三种结构是指等规聚合物、间规聚合物和无规聚合物。在等规聚丙烯(最常见的商品形式)中,甲基原子团都处在聚合物骨架的同一侧,这一结构很容易形成结晶态。等规形式的结晶性赋予它良好的抗溶剂和抗热性能。在前十年期间所用的催化剂技术使非等规异构体的生成达到最少程度,消除了对无价值的无规组分进行分离的必要性,简化了生产步骤。生产聚丙烯的工艺主要有两种:一种是气相法;一种是液体丙烯淤浆法。此外,还有一些老式淤浆工艺装置在运行,它们采用一种液态饱和烃作为反应介质。 比较而言,高密度和低密度聚乙烯都有较高的密度,相当低的熔点和较低的弯曲模量即刚度。这些性能差异导致了最终用途不同。刚度和易定向性使聚丙烯均聚物适合制作各种纤维和用于延展带,而它们较高的耐热性使它们能用于制作硬的高压容器和器具及汽车的模塑部件。 影响聚丙烯均聚物的加工性能和物理性能的主要因素包括:分子量(通常用流速表示);分子量分布(简称MWD);有规立构性和助剂。聚丙烯平均分子量范围从约200 000到 600 000。分子量分布通常用聚合物的重均分子量()与数均分子量()的比值表示, 。该式又称为多分散性指数。 一个聚合物的分子量分布对它的加工性能和最终使用性能有举足轻重的影响。这是因为熔融态的聚丙烯对剪切敏感,即当施加的压力升高时,其表观粘度降低。分子量分布范围宽的聚丙烯比分布窄的更对剪切敏感,因而具有宽范围分子量分布的材料在注塑过程中更易于加工。某些特定的用途,特别是纤维,则要求窄范围的分子量分布。分子量分布与催化剂体系和聚合反应工艺都有关系。常用过氧化物在反应器后面的挤压过程进行化学裂解,使分子量分布范围变窄。这一过程称为控制流变学(CR)过程。 与聚乙烯相比较,等规聚丙烯其独特的分子结构及螺旋状晶体导致其分子链更易受光和热而氧化降解。在通常的加工和最终使用条件下,聚丙烯要经受无规的断链作用,导致分子量降低和流速升高。所有的商品级聚丙烯都含有稳定剂,以便在加工时保护材料,提供令人满意的最终使用性能。对于特别的用途,除了加抗氧剂和紫外线抑制剂外,还须加其它添加剂。例如:在薄膜配方中加入润滑剂和防粘剂,以减少摩擦系数并防止薄膜自身粘连。在包装材料中添加抗静电以消除静电荷。为了提高透明度或缩短模型周期,则需用成核剂。均聚物树脂通常按流速和最终用途分类。流速取决于平均分子量和分子量分布两者。某些特殊用途要求流速高达400分克/分钟,而普通商品均聚物的流速则在分克/分钟的范围以内。流速通常是确定加工特性最主要的因素。 加工和应用 聚丙烯极好的流动性能和宽范围的流速,以及其它独特的聚合物特性相结合,使它具有优异的加工性能。较低的流速能满足挤压带、带状长丝和单丝等的加工要求,还能使成品有抗张强度和低延伸性,同时保持足够的横向完整性,使卷丝机导向装置上的劈裂和粉尘飞扬的情况达到最低程度。为了抵消它们特有的低横向强度和断裂倾向(原纤化),定向程度更高的薄膜到纤维产品,如:粗纤度纺织品、细绳和绳子,通常要求流速在7~20的范围内。含有发泡剂的装饰带条产品是由流速接近于10的聚丙烯挤压而成的,这样才能使熔体强度和定向能力达到适当的均衡。这种聚合物经中等程度的定向,能产生光滑的类似缎于一样的表面效果,产品有足够的横向强度可以延缓断裂。非织布和多丝产品的挤压需要一种低粘度、自由流动的材料,因此,流速极高的聚丙烯用于这些用途。 浇铸PP薄膜大量用于绘图艺术品方面。另外,薄膜可以双轴取向和热变定,使具有极好的机械性能和热性能,应用于各种性能层合材料和包装材料方面。使用管式水冷激工艺可以把PP加工成共挤出吹制薄膜以及单层薄膜。热成型用的挤塑片材要求使用低流速配方的材料,使具有足够的熔体强度。当使用PP挤塑型材时,较低的流速加工性能总是要好些。型材挤压通常限于较小的截面以便能用水急冷保证产品具有足够的韧度。PP还可以挤塑成管状产品,如饮料吸管和饮用水管。PP在线缆涂层方面也有用途。 在用量方面仅次于挤塑的注塑加工很适应聚丙烯的特性。PP良好的流动性能和强韧机械特性,被利用来生产许多种不同类型的具有内在的强韧机械性能的产品。良好的加工性能与极好的抗应力断裂性能产生了优良的模塑成型的密封罩。一般而言,低流速配方材料用于生产厚壁产品和那些要求韧性的产品。高流速的材料用于生产薄壁部件和要求快速加工的产品。 市场 PP均聚物可使用各种加工工艺,生产范围很宽的产品。 挤塑制品是消耗PP的最大市场,而纺织纤维和单丝又是其中最大的部分。长期以来,PP一直是制造纤维的主要原料,这是因为它的着色能力、耐磨损、耐化学品性能以及有利的经济条件。定向和非定向薄膜占据挤塑制品市场的第二大份额,并且是继续保持增长的领域。 接下来,注塑品是PP均聚物的第二大市场,包括容器、密封器、汽车方面的应用、家庭用品、玩具及其它许多消费品和工业方面的最终用途。许多吹塑容器选用聚丙烯,是因为它的良好的隔潮性能和足够的清沏度。鉴于对未来塑料制品的新需求,PP均聚物将继续保持增长。良好的经济方面的条件、良好的机械性能以及重量轻、着色能力强和易于加工等特性,将使PP继续成为本世纪众多应用领域的首选材料。 2.抗冲击型PP共聚物 PP有很多有用的性能,但还缺乏固有的韧性,特别是在低于其玻璃化温度的条件下.然而,通过添加冲击改性剂,可以提高其抗冲击性能。传统改良性为弹性体,通常为乙丙橡胶。普遍认为,遍布于半结晶态聚丙烯基体内的橡胶粒子,能在界面上形成许多应力集中点,防止局部形变,和断裂扩展。抗冲击改性剂一直是在共混时添加进去的,最近,弹性体组分的现场合成已经具有商业重要性。而且,正在宣传用一种新系列的冲击改性剂来代替乙丙橡胶,即Flexomer聚烯烃、Exact塑弹体和Insite聚合物。这些都是烯烃聚合物,它们填补了极低密度聚乙烯和传统乙丙弹性体之间的空白。 化学和性能 等规PP均聚物,是在Ziegler-Natta催化剂体系催化下,由丙烯聚合而成的。乙丙橡胶组分在一系列反应器中合成的,或是预先购买,然后在挤压机内与PP均聚物共混。生成的抗冲击聚丙烯经粒化后出售。现场生产的抗冲击PP共聚物,可以通过选用合适的催化剂组成及反应器条件,来精确地控制其重要的性能。催化剂组成和反应器条件决定基体树脂的结晶度、橡胶组分的组成和数量及总体分子量分布。 抗冲击PP是最轻的热塑性塑料之一,其密度低于1,每磅产品的价格低于PET、PBT、高抗冲击聚苯乙烯和ABS。按比容计,抗冲击PP的单位体积成本低于上述那些树脂和聚氯乙烯(PVC)。仅有HDPE在这方面堪与匹敌。抗冲击型PP通常在适中的温度下加工,范围为350~550°F。抗冲击聚丙烯共聚物具有广谱的熔体流动速率,通常范围为从小于1到约30。具有最高熔体流动速率的树脂,通常是由熔体流动速率较低的材料“减粘裂化”制得。也就是对从反应器出来后的材料进行一步反应,降低平均分子量,从而制得熔体流速更高的产品。抗冲击聚丙烯共聚物对化学品和环境应力断裂有很高的抵抗力。经处理后,材料可具备优良的悬臂梁式冲击强度和较低的加纳尔冲击性能。悬臂梁式冲击强度范围在到大于15英尺·磅/英寸;在-40°F下,加纳尔冲击强度范围为15到300英寸·磅以上。 橡胶组分为聚丙烯提供了冲击强度,却使抗冲击聚丙烯相对于均聚物而言,降低了刚度和热变形温度。加填料的抗冲击聚丙烯共聚物能够忍受更高的温度而不变形。填料一般为玻璃纤维。云母、滑石和碳酸钙。这些聚合物的最终用户应该知道对每一种规格的产品,在不同的熔化强度、熔体流速、刚度和热变形温度之间需作出权衡。 用途 抗冲击聚丙烯的主要商业用途是用在汽车、家用品、器具中的注塑件。它的抗冲击能力、低密度、着色能力和加工性能使它成为理想的材料。具有较高熔体流速的中等抗冲击树脂品级有较高的流动性能,这个特点在注塑大型部件如:汽车面板时特别有用。 高抗冲击能力具有较低熔体流速的树脂(一般小于2),可以转化成抗穿刺性极好的薄膜,这种薄膜的抗冲击能力和耐蒸汽杀菌能力,适合做一次性医疗废品袋。挤压片材可以用热成型法加工成大而厚的部件,如:汽车工业中的护板和汽车车尾行李箱衬里。弹性体组分改良聚丙烯抗冲击性能的机理,在材料受冲击时,可诱导应力白化。大多数用途是以弹性组分在聚丙烯基体中的分散度为基础的。基于与此相反的概念,正在开发新型的保险杠。其结果是形成了一个分子复合结构。 注释 聚丙烯 丙烯的聚合物 英文名称polypropylene缩写PP均聚物 由一种单体聚合而成的聚合物称为均聚物。 高分子 高分子就是那些分子量特别大的物质。常见的分子,我们称它们为小分子,一般由几个或几十个原子组成,分子量也在几十到几百之间。如水分子的分子量为18、二氧化硫的分子量是44。高分子则不同,它的分子量至少要大于1万。高分子物质的分子一般由几千、几万甚至几十万个原子组成,它的分子量也就是几万、几十万、甚至以亿来计算。高分子的“高”就是指它的分子量高。 聚合物 高分子分为天然高分子和人工合成高分子,天然橡胶,棉花等都属于天然高分子。人工合成高分子主要包括:化学纤维、合成橡胶和合成树脂(塑料),也称为三大合成材料。此外,大多数涂料和粘合剂的主要成分也是人工合成高分子。人工合成高分子又被称为聚合物(Polymer)。 如:聚丙烯、聚乙烯等。 共聚物 两种或两种以上的单体或单体与聚合物间进行的聚合称为共聚,共聚得到的产物即为共聚物。分嵌段共聚物、接枝共聚物、无规共聚物、有规共聚物等。
丙烯基,与氨氧化而来的NO反应生成。1977年Zidan等人研究1,丙烯、氨和氧混合物在催化剂作用下生成丙烯腈的反应机理是丙烯首先脱氢制成丙烯基,与氨氧化而来的
四层电梯教学模型PLC控制系统的设计中文摘要】本文针对PLC及电梯教学的需要,介绍了由PLC控制的自我设计的四层电梯模型的构成、设计要求、编程方法及程序等。对电
材料专业毕业论文开题报告 开题报告是指开题者对科研课题的一种文字说明材料。这是一种新的应用写作文体,这种文字体裁是随着现代科学研究活动计划性的增强和科研选题程序
丙烯精馏塔的特点主要是丙烯与丙烷的相对挥发度接近于1,丙烯产品要达到聚合级质量标准,就需要更多的塔板数。所以丙烯精馏塔一般是乙烯装置最高的塔,需要高的回流比。
中文摘要论述了PVC的结构性能。PVC可分为软PVC和硬PVC。其中硬PVC大约占市场的2/3,软PVC占1/3。软PVC一般用于地板、天花板以及皮革的表层,但