林麓是吃货
图像降噪的主要目的是在能够有效地降低图像噪声的同时尽可能地保证图像细节信息不受损失,。图像去噪有根据图像的特点、噪声统计特性和频率分布规律有多种方法,但它们的基本原理都是利用图像的噪声和信号在频域的分布不同,即图像信号主要集中在低频部分而噪声信号主要分布在高频部分,采取不同的去噪方法。传统的去噪方法,在去除噪声的同时也会损害到信号信息,模糊了图像。小波变换主要是利用其特有的多分辨率性、去相关性和选基灵活性特点,使得它在图像去噪方面大有可为,清晰了图像。经过小波变换后,在不同的分辨率下呈现出不同规律,设定阈值门限,调整小波系数,就可以达到小波去噪的目的。小波变换去噪的基本思路可以概括为:利用小波变换把含噪信号分解到多尺度中,小波变换多采用二进型,然后在每一尺度下把属于噪声的小波系数去除,保留并增强属于信号的小波系数,最后重构出小波消噪后的信号。其中关键是用什么准则来去除属于噪声的小波系数,增强属于信号的部分。
横竖都是213
小波变换原理如下:
小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与Fourier变换相比,小波变换是时间(空间)和频率的局部化分析。
它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。
小波函数源于多分辨分析,其基本思想是将扩中的函数f(t)表示为一系列逐次逼近表达式, 其中每一个都是f(t)动经过平滑后的形式,它们分别对应不同的分辨率。多分辨分析又称多尺度分析,是建立在函数空间概念基础上的理论,其思想的形成来源于工程。创建者Mallat .S是在研究图像处理问题时建立这套理论的。
丹枫在心
小波有两个显著特点:一是在时域中都具有紧支集或近似紧支集;二是正负交替的波动性。小波分析是将信号分解成一系列小波函数的叠加,而这些小波函数都是由一个母小波通过平移和尺度伸缩得来的。小波分析理论的一个重要特色是可以进行多分辨率分析。信号可通过多层分解为反映高频信息的细节部分和反映低频信息的概貌部分,通过这种多分辨率分解,信号和噪声通常会有不同的表现,从而达到信嗓分离的目的。金融时间序列去噪处理采用更广泛的方法:非线性阈值处理方法。非线性阈值处理方法又称小波收缩法,该方法的基本原理是基于小波变换的集中能力。即通过小波变换后有用信号的能量集中于少数小波系数上,而白噪声在小波变换域上仍然分散在大量小波系数之上。因而相对来说,有用信号的小波系数值必然大于那些能量分散且幅值较小的噪声的小波系数值。因此,从谱的幅度上(不是谱的位置)看,有用信号和噪声可以实现分离。该方法可分为以下3个步骤:(1)选择合适的正交小波基和分解层数J,对含噪信号进行小波变换分解到J层。(2)对分解得到的小波系数进行闭值处理,可以使用两种处理方法:硬阈值和软阈值法。硬阈值法保留较大的小波系数并将较小的小波系数置零,即:(3)软阈值法将较小的小波系数置零,而对较大的小波系数向零进行收缩,即:学者证明了用软阈值法能使估计信号实现最大均方误差最小化,即去噪后的估计信号是原始信号的近似最优估计。该方法具有广泛的适用性,是应用最为广泛的一种小波去噪方法,其计算速度也很快。
摘要随着科学技术的迅速发展,数学建模这个词会越来越多的出现在现代人的生产、工作和社会活动中。众所周知,建立数学模型是沟通摆在面前的实际问题与数学工具之间的一座必
在数学中,群是一种代数结构,由一个集合以及一个二元运算所组成。要具有成为群的资格,这个集合和运算必须满足一些被称为“群公理”的条件,也就是结合律、单位元和逆元。
传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制
你看看这个吧!!
相关范文: 匿名通信技术在电子商务中的应用 [摘 要] 随着Internet的迅猛发展和广泛应用,网上的匿名和隐私等安全问题也逐步成为全球共同关注的焦点,尤其在