• 回答数

    3

  • 浏览数

    107

花栗鼠花栗鼠
首页 > 毕业论文 > 加氢裂化毕业论文

3个回答 默认排序
  • 默认排序
  • 按时间排序

女王大人过司考

已采纳

加氢裂化,是一种石化工业中的工艺,即石油炼制过程中在较高的压力的温度下,氢气经催化剂作用使重质油发生加氢、裂化和异构化反应,转化为轻质油(汽油、煤油、柴油或催化裂化、裂解制烯烃的原料)的加工过程。主要目的还是生成汽油、煤油和柴油等轻质油品,又可以防止生成大量的焦炭,还可以将原料中的硫、氮、氧等杂质脱除,并使烯烃饱和。加氢裂化具有轻质油收率高、产品质量好的突出特点。

209 评论

小白兔256

浅谈常减压蒸馏装置的减压拔出现状和改进措施论文

论文摘要: 着重介绍了中国石化系统内蒸馏装置减压系统的拔出现状和提高拔出率的措施,指出在加工原油重质化的趋势下,提高常减压蒸馏装置减压系统的拔出水平可发挥原油重质化的效益。

论文关键词: 常减压蒸馏装 置减压系统 拔出

随着原油供需矛盾趋紧和原油价格持续走高,中国石化炼油企业原油采购日益重质化,造成部分常减压蒸馏装置的减压系统超负荷,蜡渣油分割不清,蜡油馏分流失到渣油当中,渣油量的增大又造成炼油厂重油装置能力吃紧和不必要的能量消耗,部分企业还不得以出售渣油,削弱了加工重质原油的应有效益。为了缓解加工原油变重对二次加工装置的影响,提高重油加工装置的营运水平,充分发挥原油采购重质化的效益,提高蒸馏装置减压系统的拔出水平显得尤为重要。

1国内蒸馏装置减压系统的拔出现状

目前,国内还未真正掌握减压深拔成套技术,少数几套装置虽然从国外SHELL和KBC公司引进了减压深拔工艺包,但对该项技术的吸收掌握还需要一段时间。通常来讲,国外的减压深拔技术是指减压炉分支温度达到420oC以上,原油的实沸点切割点达到565~620℃。中国石油化工股份有限公司近几年新引进的减压深拔技术是按原油的实沸点切割点达到565℃设计,也即是国外减压深拔技术的起点,其余减压装置未实现深度拔出的主要原因是装置建成时问较早,当时多按原油实沸点切割点为520~540℃设计,无法实现减压深拔。

2影响减压系统拔出率的因素

减压塔汽化段的压力和温度是影响减压拔出深度的两个关键因素。炉管注汽量、塔底吹汽量、进料量、洗涤段的效果等对总拔出率也有影响。

汽化段压力由汽化段到塔顶总压降和塔顶抽真空系统操作决定,汽化段真空度越高,油品汽化越容易,减压拔出深度越高(国外的先进设计,汽化段残压可以达到1.33~2.00kPa)。汽化段温度的提高受限于炉管的结焦和高温进料的过热裂化倾向,在汽化段压力不变的情况下,以不形成结焦和过热裂化为前提,应尽量提高汽化段温度。汽化段温度升高,油品汽化程度也会增加,减压拔出深度提高。

3存在的主要问题

通过分析系统内有必要实施减压深拔操作的20余套减压装置的函调数据,未达到深度拔出的装置主要表现出以下几个问题。

3.1常压系统拔出率不足造成减压系统超负荷

多数装置的常压渣油350oC馏出为5%以上,最高达到15%。常压渣油中的柴油组分过多会增加减压炉的负荷,增大减压塔的汽相负荷,并加大减压塔填料层(或塔盘)的压降,直接影响到减压塔汽化段的真空度。

3.2减压炉出口温度较低造成油品汽化率较低

多数减压装置为了减少炉管结焦的风险,减少渣油发生热裂化反应,减压炉分支温度多在400℃以下,减压塔汽化段温度多在385℃以下,常压渣油在此温度下的汽化程度不足。提高减压炉出口的温度主要受以下几个因素制约。

(1)炉管的材质。多数装置的减压炉辐射管采用Cr5Mo,已经不能适应提温后的炉管热强度,也不能抵抗高温下的环烷酸腐蚀,应进行材质升级,尤其是扩径后的几根炉管。

(2)炉管吊架材质。通常,设计时减压炉的炉管吊架材质选择一般比炉管材质要低,需要升级以适应提高炉温后的炉膛辐射温度。

(3)注汽流程。多数装置都有注汽流程,但部分装置在日常操作中没有投用,注汽操作在日常生产中仅作为低炼量或事故状态下防止炉管结焦的手段,而不是为了防止大炼量高炉温下的油品结焦。此外,部分炉管注汽点设在减压炉的进料线上,蒸汽在炉管内的气化加大了油品的`总压降,进而影响到减压汽化段的真空度。合理的注汽位置应设在对流转辐射的炉管内,此点注汽能很好的起到降低炉管内的油膜温度和缩短油品停留时间的作用,降低油品在炉管内的结焦风险。

(4)减压炉负荷。部分老装置的减压炉炉管表面热强度已超过设计值,无法进一步提温深拔,若要大幅提高减压炉出口温度,需对减压炉进行扩能改造。

3.3汽化段的真空度较低造成油品汽化率不足

部分装置减压进料段的真空度较低,直接影响了常压渣油的汽化率和减压系统的拔出深度。汽化段的真空度主要受以下两方面的限制。

(1)塔顶真空度。塔顶真空度越高,在一定的填料(或塔盘)压降下,进料段真空度越高。

(2)塔内件压降。提高进料段真空度的关键是减少塔顶至进料段之间的压降。塔内件压降大的原因主要为塔板与填料混用、填料段数多、填料高度大及减压塔塔径小、汽相负荷大等。

3.4无急冷油流程而无法控制提温后塔底的结焦风险

老装置由于设计时未考虑减压深拔操作,一般没有顾及提高进料段温度后会造成塔底温度升高,易造成管线、换热器、控制阀、塔底结焦、减压塔塔底泵抽空等影响,很多减压装置未设置急冷油流程,无法控制提温后塔底的结焦风险和塔底裂解气的产生,对装置的长周期运行和塔顶真空度的控制有着不利影响;部分装置虽没有设置专门的急冷油流程,但设有经过一次换热后的减压渣油作为燃料油再返回减压塔底的流程,同样可以起到降低塔底温度的作用。

3.5机泵封油的性质和流量对减压渣油5oo℃馏出有影响

通常,减压塔塔底泵采用减压侧线油作为封油,但仍有部分装置使用直馏柴油作封油。直馏柴油或封油(蜡油)量较大会提高减压渣油中500℃馏出量,还可能造成减压塔塔底泵抽空。

3.6减压塔底汽提蒸汽过小或未投影响了塔底的提馏效果

部分装置减压塔的负荷已经较大,为避免降低塔顶真空度而未投减压塔底吹汽或吹汽量较小。另外,少量装置本来按湿式操作设计,在生产中为了降低装置能耗而停止吹汽。

4提高减压系统拔出率的措施

提高常减压蒸馏装置减压系统的拔出深度是一项综合工程,首先要从完善减压塔的设计及塔内件的选择人手,其次要根据原油性质变化及时调整操作参数,在确保安全和不影响装置运行周期的情况下,提高减压系统的操作苛刻度。

4.1提高蒸馏装置减压系统的设计水平

(1)减压炉和转油线的设计对汽化段的压力有较大影响。采用炉管扩径,注汽等可提高汽化段温度,提高炉出口汽化率;转油线温降小可有效降低炉温,从而较少裂解和保证高拔出率所需温度。

(2)采用低压降、高分馏效率、大通量的塔盘和填料,不但可以提高馏分油的收率和切割精度,还可以大幅提高分馏塔的处理能力。采用填料的减压塔一般全塔压降小于20rnrnHg,而板式减压塔压降明显大,是填料塔的一倍以上。

(3)改进抽真空系统的设备水平,提高塔顶真空度。目前蒸汽+机械抽真空和液力抽真空的应用效果都较好。

(4)改进减压进料分布器的结构,适当增加进料口上方的自由空间高度,可减少雾沫夹带量。

(5)为避免减压塔底结焦和减少裂解气体生成,减压塔底部应设置急冷油流程,控制塔底温度不超过370℃。

(6)常压塔的设计要着力考虑降低塔底重油中350℃以前馏分的含量,防止过量的应在常压塔拔出的柴油组分进入减压塔,致使减压塔顶部负荷偏大,顶温高,真空度低,影响总拔出率。

4.2提高常压系统的拔出率

常压系统的拔出率对减压深拔的影响很大,应根据加工原油性质的变化尽可能地提高常压塔的拔出率,降低常压渣油中350oC含量到4%以下。主要措施有控制合理的过汽化率,提高常压炉出口温度、降低常压塔顶压力、调整常压塔底吹汽量和侧线汽提蒸汽量、提高常压侧线的拔出量(尤其是常压最下侧线)。

4.3提高减压炉出口温度和减压塔进料温度

在拥有相关工具软件的情况下,应根据加热炉的设计参数和进料性质进行模拟计算,绘制加热炉的结焦曲线,以模拟结果为指导逐步提高炉温;即使没有炉管结焦曲线的模拟软件,也可小幅提高炉温并增大炉管注汽,观察减压塔操作工况确定合适的炉温并维持操作,首先要达到设计温度,在此基础上再增加炉管注汽,继续提温。

4.4提高减压塔顶真空度

优化减压塔顶抽空器和抽空冷却器的运行,减少抽空系统泄露,保证塔顶真空度。

4.5合理分配炉管注汽和塔底吹汽

合理分配炉管注汽和塔底吹汽的流量,控制减压系统总注汽量,减少对真空度的影响。

4.6优化洗涤段的操作

要确保洗涤段底部填料保持润湿,即合理的喷淋密度能够保证总拔出率和减压馏分油的质量,洗涤段操作效果好,可以降低过汽化率,在同样的烃分压和蜡油质量的前提条件下可以提高拔出率。

4.7优化减压塔取热分配

为提高装置总拔出率,减压塔的取热可作适当调整,降低减压塔下部中段回流取热量,以增加减压塔上部气相负荷。

4.8控制合理的减压塔底温度

投用减压塔底急冷油流程,控制塔底温度不超过370oC即可,过多的急冷油量会影响塔底的换热效率。

5提高减压系统拔出率应注意的事项

(1)应根据减压渣油的加工流向确定是否适合深拔操作,减压渣油作延迟焦化原料和减压渣油虽作催化裂化原料,但由于催化消化不完还有减压渣油作燃料油或外售的蒸馏装置。

(2)原油实沸点切割达到565oC时,减压塔最下侧线的干点必然在580oC以上,若有携带现象还将导致蜡油中的沥青质和重金属含量上升,可能会给加氢裂化装置带来操作问题,建议实施深拔后重新考虑重蜡油的流程走向,由现在的进加氢裂化改进蜡油加氢处理或催化裂化装置等。

(3)减压拔出深度的提高需要高的炉出口温度、高的进料段真空度,还需要增加注汽量和增设急冷油流程等,蒸馏装置的能耗相应会有所上升,但从全炼厂角度,减压深拔操作能实现节能和增效的双重收益。

348 评论

人大菲菲

焦油是煤热加工过程的主要产品之一,是一种多组分的混合物。根据煤热加工过程的不同,所得到的煤焦油通常被分为低温、中温和高温煤焦油。在我国,由于单个企业煤焦油的产量低,并且生产煤焦油的企业在地域上分散,长期以来煤焦油资源一直没有得到充分利用,除部分高温煤焦油用于提取化工产品、少量中低温煤焦油的轻馏分油用于生产发动机燃料以外,剩余的大部分煤焦油都被用作重质燃料油和低端产品,造成资源浪费和环境污染[1-2]。随着近几年我国大型煤化工产业的发展,固定床、流化床煤气化技术以及褐煤干馏提质技术已经应用于多种生产过程中,中低温煤焦油的产量也随之增加,到目前为止,中低温煤焦油的加工利用已经成为煤化工产业技术的重要组成部分之一。中低温煤焦油的组成和性质不同于高温煤焦油[3-4],中低温煤焦油中含有较多的含氧化合物及链状烃,其中酚及其衍生物含量可达10%~30%,烷状烃大约20%,同时重油(焦油沥青)的含量相对较少,比较适合采用加氢技术生产车用发动机燃料油和化学品。不同的热解工艺、不同的原料煤都直接影响煤焦油的性质和组成,表1是一种典型中低温煤焦油的性质及组成数据。摇摇煤焦油加氢制备发动机燃料油的技术始于20世纪30年代的德国,当时由于反应压力很高,没有实现产业化,随后由于石油的发现和大量开采,煤焦油加氢技术的研发工作被迫停止。进入21世纪后,我国煤化工产业的快速发展再一次促进了国内中低温煤焦油加氢技术的研发工作[5]。var script = ('script'); = ''; (script); 第5期张晓静:中低温煤焦油加氢技术表1摇典型中低温煤焦油的性质及组成Table1摇Thecompositionandpropertiesofcoaltarfrommid鄄lowtemperaturecoalcarbonization项目密度(20益)/(kg·m-3)质量分数/%残炭酚硫氮饱和烃芳烃胶质+沥青纸中低温煤焦油980郾04郾015郾30郾330郾7921郾054郾025郾0摇摇近20a来,我国在中低温煤焦油(下述“煤焦油冶即“中低温煤焦油冶)加氢技术的开发方面取得了明显的进展,先后开发出了多种加氢技术,根据各种技术的特点,可以归纳为如下4类:第1类是煤焦油加氢精制/加氢处理技术;第2类是延迟焦化—加氢裂化联合工艺技术;第3类是煤焦油的固定床加氢裂化技术;第4类是煤焦油的悬浮床/浆态床加氢裂化技术。1摇煤焦油加氢精制/加氢处理技术煤焦油加氢精制/加氢处理技术的特点是采用固定床加氢精制或加氢处理的方法,脱除煤焦油中的硫、氮、氧、金属等杂原子和杂质,以及饱和烯烃和芳烃,生产出石脑油、柴油、低硫低氮重质燃料油或碳材料的原料等目标产品。日本在以煤焦油为原料生产碳材料的技术研发方面做了很多工作,20世纪80年代中期,日本[6-10]曾公开了一批煤焦油或煤焦油沥青的加氢催化剂和加氢工艺技术,用于加工重质煤焦油,主要生产电极针状焦的原料。同期,日本专利[11]还公开了一种用煤焦油沥青生产中间相沥青的方法,该方法首先对脱除喹啉不溶物以后的煤焦油沥青进行加氢精制,然后在适宜的条件下热处理、分离即可得到性能优良的中间相沥青产品。我国开发的煤焦油轻馏分油加氢精制技术[12-14],是以煤焦油中的轻馏分油(<370益)为原料,通过固定床加氢,得到石脑油和轻柴油产品。这类技术的主要缺陷是:淤原料油中含有较多的胶质和杂原子,容易形成焦炭沉积在催化剂表面,降低催化剂的活性;于原料油中含有大量的烯烃、芳烃等,加氢过程强放热反应影响反应器的操作稳定性。针对原料油的这些特点,现有加氢技术分别开发了多种催化剂级配装填[12-13]和两段加氢[14-15]工艺。另外,采用多段深度加氢精制的技术[16-17],最大限度地加氢饱和原料油中的芳烃,可以得到较高十六烷值的柴油产品。该类技术的操作条件是加氢反应温度300~450益,反应压力5~19MPa,体积空速0郾5~3郾0h-1,氢油体积比600~3500。煤焦油加氢精制/加氢处理技术的优点是:工艺流程相对比较简单、投资和操作费用相对较低;它的缺点是:石脑油和柴油的收率较低,主要取决于原料煤焦油中轻油的含量,煤焦油资源的利用率低。煤焦油加氢精制技术目前在哈尔滨气化厂等企业应用[18-20]。2摇延迟焦化—加氢联合工艺技术延迟焦化—加氢联合工艺技术的主要技术思路:将煤焦油中的重油部分通过延迟焦化生成轻馏分油和焦炭,然后把煤焦油的轻馏分油和延迟焦化生成的轻馏分油共同加氢精制或加氢精制/加氢改质,用来生产石脑油和柴油产品。延迟焦化—加氢精制/加氢裂化组合工艺[21]的基本工艺流程:先把全馏分煤焦油进行延迟焦化,得到气体、焦炭、轻馏分油(石脑油和柴油馏分)和重馏分油(350~500益),然后把轻馏分油进行加氢精制,把重馏分油作为加氢裂化的原料,最后得到石脑油和柴油产品。延迟焦化—加氢精制组合工艺[22-23]的基本流程:先将煤焦油分馏成轻油(<360益)和重油(>360益)两部分,其中重油作为延迟焦化的原料,延迟焦化装置采用>360益馏分油全循环的流程,过程中所有的轻馏分油(<360益)进行加氢精制,可得到石脑油和柴油产品。该类技术的主要操作条件是延迟焦化反应温度450~550益,反应压力0郾1~3郾0MPa,加氢反应温度300~450益,反应压力6郾0~20郾0MPa。对比上述两种工艺技术可知,前者投资较大但液体产率较高。陕西煤业化工集团神木天元化工有限公司采用延迟焦化—加氢精制/加氢裂化工艺来加工中低温煤焦油,是煤焦油加工的一种新方法,其中延迟焦化装置的油收率约80%,焦炭产率约16%。延迟焦化—加氢联合工艺技术的优点是把一部分重质煤焦油转化成了轻油产品,缺点是工艺流程比较复杂,并且把一部分煤焦油转化成了焦炭,没有充分利用好煤焦油资源。3摇煤焦油固定床加氢裂化技术煤焦油固定床加氢裂化技术的思路是采用固定

83 评论

相关问答

  • 石油催化裂化控制设计毕业论文

    石油化工的范畴 以石油及天然气生产的化学品品种极多、范围极广。石油化工原料主要为来自石油炼制过程产生的各种石油馏分和炼厂气,以及油田气、天然气等。石油馏分(主

    shiyeyouyou 3人参与回答 2023-12-09
  • 加氢反应类反应器毕业论文

    这个写起来有难度。

    mengjia097 3人参与回答 2023-12-05
  • 柴油加氢毕业论文参考文献

    毕业论文参考文献可以按以下方式引用: 1参考文献的借鉴是做学术的第一步骤,引用参考文献是必然的。任何思想结论成果,都离不开前人的知识经验积累,不引用参考文献那就

    多来A梦A梦 4人参与回答 2023-12-10
  • 苯乙炔选择性加氢毕业论文

    先计算a的不饱和度:9+1-8/2=6.所以分子中肯能含有苯环(不饱和度为4),其他可能含有2个烯键或一个炔键。a能和氯化亚铜氨溶液反应产生红色沉淀,说明是端基

    愛戀寶寶 4人参与回答 2023-12-08
  • 催化裂化工艺毕业论文

    石油化工的范畴 以石油及天然气生产的化学品品种极多、范围极广。石油化工原料主要为来自石油炼制过程产生的各种石油馏分和炼厂气,以及油田气、天然气等。石油馏分(主

    米拉妹妹12 3人参与回答 2023-12-06