首页 > 论文发表知识库 > 矩阵分解及应用毕业论文设计

矩阵分解及应用毕业论文设计

发布时间:

矩阵分解及应用毕业论文设计

我的毕业论文题目是矩阵的乘法及其应用~个人感觉相当简单~我是数学与应用数学专业

好写哦!科技论文,专业性这么强,写出来,也是只有专业人员才能明白。首先,序言:把矩阵的乘法原理,加以介绍、解释和说明,这些就是书上现成的东西。接着介绍其应用都有哪些,具体在哪些方面。最后说明本文主要介绍哪些方面的具体应用及事例。进入正文,集中写清楚,你要介绍的应用及事例。字数要多,就多写,写详细一些;字数一般,就写得一般,就可以啦。。。祝成功!

在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合[1] ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则[2] 。矩阵的现代概念在19世纪逐渐形成。1800年代,高斯和威廉·若尔当建立了高斯—若尔当消去法。1844年,德国数学家费迪南·艾森斯坦()讨论了“变换”(矩阵)及其乘积。1850年,英国数学家詹姆斯·约瑟夫·西尔维斯特(James Joseph Sylvester)首先使用矩阵一词[3] 。英国数学家凯利被公认为矩阵论的奠基人。他开始将矩阵作为独立的数学对象研究时,许多与矩阵有关的性质已经在行列式的研究中被发现了,这也使得凯利认为矩阵的引进是十分自然的。他说:“我决然不是通过四元数而获得矩阵概念的;它或是直接从行列式的概念而来,或是作为一个表达线性方程组的方便方法而来的。”他从1858年开始,发表了《矩阵论的研究报告》等一系列关于矩阵的专门论文,研究了矩阵的运算律、矩阵的逆以及转置和特征多项式方程。凯利还提出了凯莱-哈密尔顿定理,并验证了3×3矩阵的情况,又说进一步的证明是不必要的。哈密尔顿证明了4×4矩阵的情况,而一般情况下的证明是德国数学家弗罗贝尼乌斯()于1898年给出的[2] 。1854年时法国数学家埃尔米特()使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。至此,矩阵的体系基本上建立起来了。无限维矩阵的研究始于1884年。庞加莱在两篇不严谨地使用了无限维矩阵和行列式理论的文章后开始了对这一方面的专门研究。1906年,希尔伯特引入无限二次型(相当于无限维矩阵)对积分方程进行研究,极大地促进了无限维矩阵的研究。在此基础上,施密茨、赫林格和特普利茨发展出算子理论,而无限维矩阵成为了研究函数空间算子的有力工具[4] 。

矩阵的分解及其应用论文开题报告

相乘的形式设为A*B,A的行对应B的列,对应元素分别相乘;相乘的结果行还是A的行、列还是B的列;A的列数必须等于B的行数。在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合 ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

可以说是最简单的矩阵分解方法,将矩阵A分解成L(下三角)矩阵和U(上三角)矩阵的乘积。其实就是高斯消元法的体现,U矩阵就是利用高斯消元法得到的,而消元过程用到的初等变换矩阵乘积就是L矩阵。需要注意的是,L矩阵可以是置换过的矩阵,即一个下三角矩阵和一个置换矩阵的乘积(可以参考MATLAB中LU分解的函数lu)。

加油吧,少年

怎么写开题报告呢?首先要把在准备工作当中搜集的资料整理出来,包括课题名称、课题内容、课题的理论依据、参加人员、组织安排和分工、大概需要的时间、经费的估算等等。第一是标题的拟定。课题在准备工作中已经确立了,所以开题报告的标题是不成问题的,把你研究的课题直接写上就行了。比如我曾指导过一组同学对伦教的文化诸如“伦教糕”、伦教木工机械、伦教文物等进行研究,拟定的标题就是“伦教文化研究”。第二就是内容的撰写。开题报告的主要内容包括以下几个部分:一、课题研究的背景。 所谓课题背景,主要指的是为什么要对这个课题进行研究,所以有的课题干脆把这一部分称为“问题的提出”,意思就是说为什么要提出这个问题,或者说提出这个课题。比如我曾指导的一个课题“伦教文化研究”,背景说明部分里就是说在改革开放的浪潮中,伦教作为珠江三角洲一角,在经济迅速发展的同时,她的文化发展怎么样,有哪些成就,对居民有什么影响,有哪些还要改进的。当然背景所叙述的内容还有很多,既可以是社会背景,也可以是自然背景。关键在于我们所确定的课题是什么。二、课题研究的内容。课题研究的内容,顾名思义,就是我们的课题要研究的是什么。比如我校黄姝老师的指导的课题“佛山新八景”,课题研究的内容就是:“以佛山新八景为重点,考察佛山历史文化沉淀的昨天、今天、明天,结合佛山经济发展的趋势,拟定开发具有新佛山、新八景、新气象的文化旅游的可行性报告及开发方案。”三、课题研究的目的和意义。课题研究的目的,应该叙述自己在这次研究中想要达到的境地或想要得到的结果。比如我校叶少珍老师指导的“重走长征路”研究课题,在其研究目标一栏中就是这样叙述的:1、通过再现长征历程,追忆红军战士的丰功伟绩,对长征概况、长征途中遇到了哪些艰难险阻、什么是长征精神,有更深刻的了解和感悟。2、通过小组同学间的分工合作、交流、展示、解说,培养合作参与精神和自我展示能力。3、通过本次活动,使同学的信息技术得到提高,进一步提高信息素养。四、课题研究的方法。在“课题研究的方法”这一部分,应该提出本课题组关于解决本课题问题的门路或者说程序等。一般来说,研究性学习的课题研究方法有:实地调查考察法(通过组织学生到所研究的处所实地调查,从而得出结论的方法)、问卷调查法(根据本课题的情况和自己要了解的内容设置一些问题,以问卷的形式向相关人员调查的方法)、人物采访法(直接向有关人员采访,以掌握第一手材料的方法)、文献法(通过查阅各类资料、图表等,分析、比较得出结论)等等。在课题研究中,应该根据自己课题的实际情况提出相关的课题研究方法,不一定面面俱到,只要实用就行。五、课题研究的步骤。课题研究的步骤,当然就是说本课题准备通过哪几步程序来达到研究的目的。所以在这一部分里应该着重思考的问题就是自己的课题大概准备分几步来完成。一般来说课题研究的基本步骤不外乎是以下几个方面:准备阶段、查阅资料阶段、实地考察阶段、问卷调查阶段、采访阶段、资料的分析整理阶段、对本课题的总结与反思阶段等。六、课题参与人员及组织分工。这属于对本课题研究的管理范畴,但也不可忽视。因为管理不到位,学生不能明确自己的职责,有时就会偷懒或者互相推诿,有时就会做重复劳动。因此课题参与人员的组织分工是不可少的。最好是把所有的参与研究的学生分成几个小组,每个小组通过民主选举的方式推选出小组长,由小组长负责本小组的任务分派和落实。然后根据本课题的情况,把相关的研究任务分割成几大部分,一个小组负责一个部分。最后由小组长组织人员汇总和整理。七、课题的经费估算。一个课题要开展,必然需要一些经费来启动,所以最后还应该大概地估算一下本课题所需要 的资金是多少,比如搜集资料需要多少钱,实地调查的外出经费,问卷调查的印刷和分发的费用,课题组所要占用的场地费,有些课题还需要购买一些相关的材料,结题报告等资料的印刷费等等。所谓“大军未动,粮草先行”,没有足够的资金作后盾,课题研究势必举步维艰,捉襟见肘,甚至于半途而废。因此,课题的经费也必须在开题之初就估算好,未雨绸缪,才能真正把本课题的研究做到最好。

矩阵的性质及应用毕业论文

我的毕业论文题目是矩阵的乘法及其应用~个人感觉相当简单~我是数学与应用数学专业

运算性质,满足结合律和分配律

结合律: (λμ)A=λ(μA) ; (λ+μ)A =λA+μA

分配律: λ (A+B)=λA+λB

扩展资料

矩阵在物理学中的另一类泛应用是描述线性耦合调和系统。这类系统的运动方程可以用矩阵的形式来表示,即用一个质量矩阵乘以一个广义速度来给出运动项,用力矩阵乘以位移向量来刻画相互作用。

求系统的解的最优方法是将矩阵的特征向量求出(通过对角化等方式),称为系统的简正模式。这种求解方式在研究分子内部动力学模式时十分重要:系统内部由化学键结合的原子的振动可以表示成简正振动模式的叠加 。描述力学振动或电路振荡时,也需要使用简正模式求解 。

好写哦!科技论文,专业性这么强,写出来,也是只有专业人员才能明白。首先,序言:把矩阵的乘法原理,加以介绍、解释和说明,这些就是书上现成的东西。接着介绍其应用都有哪些,具体在哪些方面。最后说明本文主要介绍哪些方面的具体应用及事例。进入正文,集中写清楚,你要介绍的应用及事例。字数要多,就多写,写详细一些;字数一般,就写得一般,就可以啦。。。祝成功!

1. 对称矩阵A正定的充分必要条件是A的n个特征值全是正数。

2.对称矩阵A正定的充分必要条件是A合同于单位矩阵E。

3.对称矩阵A正定(半正定)的充分必要条件是存在n阶可逆矩阵U使A=U^TU

4.对称矩阵A正定,则A的主对角线元素均为正数。

5.对称矩阵A正定的充分必要条件是:A的n个顺序主子式全大于零。

在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。

对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

参考资料:百度百科——矩阵 (数学术语)

矩阵相似及其应用毕业论文

好写哦!科技论文,专业性这么强,写出来,也是只有专业人员才能明白。首先,序言:把矩阵的乘法原理,加以介绍、解释和说明,这些就是书上现成的东西。接着介绍其应用都有哪些,具体在哪些方面。最后说明本文主要介绍哪些方面的具体应用及事例。进入正文,集中写清楚,你要介绍的应用及事例。字数要多,就多写,写详细一些;字数一般,就写得一般,就可以啦。。。祝成功!

结论如下:

特征值是相同的,行列式也是一样的,相似就合同,两个矩阵主对角线的和是一样的。如果矩阵相似,那么其代表的就是不同坐标系(基)的同一个线性变换。

也就是AP=PB,其中AP是由于在自然的笛卡尔坐标系下表示的,所以前面有一个E没有写出来。也就是应该是EAP=PB,也就是EA是在笛卡尔坐标系下的坐标,P是过渡矩阵。

介绍

在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用。

我的毕业论文题目是矩阵的乘法及其应用~个人感觉相当简单~我是数学与应用数学专业

矩阵应用毕业论文

据我所知,矩阵可以解高次方程,在线性代数中也有运用。

百度文库有篇很好的,直接搜“毕业论文分块矩阵的应用”就行了。

什么叫作矩阵矩阵乘法是线性代数中最常见的运算之一,它在数值计算中有广泛的应用。若A和B是2个nn的矩阵,则它们的乘积C=AB同样是一个nn的矩阵。A和B的乘积矩阵C中的元素C[i,j]定义为:若依此定义来计算A和B的乘积矩阵C,则每计算C的一个元素C[i,j],需要做n个乘法和n-1次加法。因此,求出矩阵C的n2个元素所需的计算时间为0(n3)。60年代末,Strassen采用了类似于在大整数乘法中用过的分治技术,将计算2个n阶矩阵乘积所需的计算时间改进到O(nlog7)=O()。首先,我们还是需要假设n是2的幂。将矩阵A,B和C中每一矩阵都分块成为4个大小相等的子矩阵,每个子矩阵都是n/2n/2的方阵。由此可将方程C=AB重写为:(1)由此可得:C11=A11B11 A12B21(2)C12=A11B12 A12B22(3)C21=A21B11 A22B21(4)C22=A21B12 A22B22(5)如果n=2,则2个2阶方阵的乘积可以直接用(2)-(3)式计算出来,共需8次乘法和4次加法。当子矩阵的阶大于2时,为求2个子矩阵的积,可以继续将子矩阵分块,直到子矩阵的阶降为2。这样,就产生了一个分治降阶的递归算法。依此算法,计算2个n阶方阵的乘积转化为计算8个n/2阶方阵的乘积和4个n/2阶方阵的加法。2个n/2n/2矩阵的加法显然可以在c*n2/4时间内完成,这里c是一个常数。因此,上述分治法的计算时间耗费T(n)应该满足:这个递归方程的解仍然是T(n)=O(n3)。因此,该方法并不比用原始定义直接计算更有效。究其原因,乃是由于式(2)-(5)并没有减少矩阵的乘法次数。而矩阵乘法耗费的时间要比矩阵加减法耗费的时间多得多。要想改进矩阵乘法的计算时间复杂性,必须减少子矩阵乘法运算的次数。按照上述分治法的思想可以看出,要想减少乘法运算次数,关键在于计算2个2阶方阵的乘积时,能否用少于8次的乘法运算。Strassen提出了一种新的算法来计算2个2阶方阵的乘积。他的算法只用了7次乘法运算,但增加了加、减法的运算次数。这7次乘法是:M1=A11(B12-B22)M2=(A11 A12)B22M3=(A21 A22)B11M4=A22(B21-B11)M5=(A11 A22)(B11 B22)M6=(A12-A22)(B21 B22)M7=(A11-A21)(B11 B12)做了这7次乘法后,再做若干次加、减法就可以得到:C11=M5 M4-M2 M6C12=M1 M2C21=M3 M4C22=M5 M1-M3-M7以上计算的正确性很容易验证。例如:C22=M5 M1-M3-M7=(A11 A22)(B11 B22) A11(B12-B22)-(A21 A22)B11-(A11-A21)(B11 B12)=A11B11 A11B22 A22B11 A22B22 A11B12-A11B22-A21B11-A22B11-A11B11-A11B12 A21B11 A21B12=A21B12 A22B22由(2)式便知其正确性。至此,我们可以得到完整的Strassen算法如下:procedureSTRASSEN(n,A,B,C);beginifn=2thenMATRIX-MULTIPLY(A,B,C)elsebegin将矩阵A和B依(1)式分块;STRASSEN(n/2,A11,B12-B22,M1);STRASSEN(n/2,A11 A12,B22,M2);STRASSEN(n/2,A21 A22,B11,M3);STRASSEN(n/2,A22,B21-B11,M4);STRASSEN(n/2,A11 A22,B11 B22,M5);STRASSEN(n/2,A12-A22,B21 B22,M6);STRASSEN(n/2,A11-A21,B11 B12,M7);;end;end;其中MATRIX-MULTIPLY(A,B,C)是按通常的矩阵乘法计算C=AB的子算法。Strassen矩阵乘积分治算法中,用了7次对于n/2阶矩阵乘积的递归调用和18次n/2阶矩阵的加减运算。由此可知,该算法的所需的计算时间T(n)满足如下的递归方程:按照解递归方程的套用公式法,其解为T(n)=O(nlog7)≈O()。由此可见,Strassen矩阵乘法的计算时间复杂性比普通矩阵乘法有阶的改进。有人曾列举了计算2个2阶矩阵乘法的36种不同方法。但所有的方法都要做7次乘法。除非能找到一种计算2阶方阵乘积的算法,使乘法的计算次数少于7次,按上述思路才有可能进一步改进矩阵乘积的计算时间的上界。但是Hopcroft和Kerr(197l)已经证明,计算2个22矩阵的乘积,7次乘法是必要的。因此,要想进一步改进矩阵乘法的时间复杂性,就不能再寄希望于计算22矩阵的乘法次数的减少。或许应当研究33或55矩阵的更好算法。在Strassen之后又有许多算法改进了矩阵乘法的计算时间复杂性。目前最好的计算时间上界是O()。而目前所知道的矩阵乘法的最好下界仍是它的平凡下界Ω(n2)。因此到目前为止还无法确切知道矩阵乘法的时间复杂性。关于这一研究课题还有许多工作可做。关于应用简单一点的表格,像考试分数求和复杂一点的魔方的解决方法,用矩阵代换方法

LZ是文科生吧

  • 索引序列
  • 矩阵分解及应用毕业论文设计
  • 矩阵的分解及其应用论文开题报告
  • 矩阵的性质及应用毕业论文
  • 矩阵相似及其应用毕业论文
  • 矩阵应用毕业论文
  • 返回顶部