• 回答数

    7

  • 浏览数

    306

c阿c的鲁鲁
首页 > 职称论文 > 矩阵的秩论文参考文献

7个回答 默认排序
  • 默认排序
  • 按时间排序

鄙视投机者

已采纳

rank就是指矩阵的秩啊,low-rank matrix可能是指秩比较小的矩阵吧

242 评论

丹丹5678

低秩矩阵说的就是矩阵的秩比较小的情况!假设已知矩阵C,矩阵的低秩分解研究的就是找到一个秩比较小的矩阵C’,使得C-C'的F范数满足一个阈值的约束!SVD分解就属于低秩分解的一种方法!

241 评论

国美京华城

一个向量空间(A),不可能通过线性变换使其维数升高(r(BA)≤minr(B)r(A)),一如孤立系统中无法降低的熵。把向量空间看成广义系统,无法降低的熵表示其混乱程度,则无法升高的rank,就表示混乱的对立面(秩)。

233 评论

兔兔兔酱丶

low-rank matrix是低秩矩阵。矩阵的秩,需要引入矩阵的SVD分解:X=USV',U,V正交阵,S是对角阵。如果是完全SVD分解的话,那S对角线上非零元的个数就是这个矩阵的秩了(这些对角线元素叫做奇异值),还有些零元,这些零元对秩没有贡献。1.把矩阵当做样本集合,每一行(或每一列,这个无所谓)是一个样本,那么矩阵的秩就是这些样本所张成的线性子空间维数。如果矩阵秩远小于样本维数(即矩阵列数),那么这些样本相当于只生活在外围空间中的一个低维子空间,这样就能实施降维操作。举个例子,同一个人在不同光照下采得的正脸图像,假设每一张都是192x168的,且采集了50张,那构成的数据矩阵就为50行192x168列的,但是如果你做SVD分解就会发现,大概只有前10个奇异值比较大,其他的奇异值都接近零,因此实际上可以将接近零的奇异值所对应的那些维度丢掉,只保留前10个奇异值对应的子空间,从而将数据降维到10维的子空间了。2.把矩阵当做一个映射,既然是映射,那就得考虑它作用在向量x上的效果Ax。注意Ax相当于A的列的某个线性组合,如果矩阵是低秩的,这意味着这些列所张成的空间是外围空间的一个低维子空间,这个空间由Ax表达(其中x任意)。换句话说,这个矩阵把R^n空间映射到R^m空间,但是其映射的像只在R^m空间的一个低维子空间内生活。从SVD理解的话,Ax=USV'x,因此有三个变换:第一是V'x,相当于在原始的R^n空间旋转了一下坐标轴,这样只是坐标的变化,不改变向量本身(例如长度不变);第二是S(V'x),这相当于沿着各个坐标轴做拉伸,并且如果S的对角线上某些元素为零,那么这些元素所对应的那些坐标轴就相当于直接丢掉了;最后再U(SV'x),还是一个坐标轴旋转。总的来看,Ax就相当于把一个向量x沿着某些特定的方向做不同程度的拉伸(附带上一些不关乎本质的旋转),甚至丢弃,那些没被丢弃的方向个数就是秩了。

180 评论

莫奈小兔

低秩矩阵rank就是指矩阵的秩啊,low-rank matrix可能是指秩比较小的矩阵

224 评论

刘阳780210

小秩矩阵(low-rank matrix)在核方法和抽样中,可有效地减小计算开销。也可称作“低秩矩阵”。

249 评论

以心为马

两个矩阵相乘可能使某一行或者某一列为零,从而是秩减小,但是原来是零的一行或者一列乘过以后还是零,所以秩不可能增大,只会不变或者减小。

证:由于K是满秩方阵,因此可逆,存在K逆,等式两边同时左乘K逆,得

K逆( )=( ),第一个括号里是beta那个向量组,第二个括号里是alpha那个向量组

这样就说明alpha那个向量组可由beta那个向量组线性表示,因此两向量组可以互相线性表示,所以两向量组等价,由于等价向量组秩相同,因此beta那个向量组的秩也是s,因此beta向量组线性无关。

扩展资料:

在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。即如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。

定理:矩阵的行秩,列秩,秩都相等。

定理:初等变换不改变矩阵的秩。

定理:如果A可逆,则r(AB)=r(B),r(BA)=r(B)。

定理:矩阵的乘积的秩Rab<=min{Ra,Rb};

参考资料来源:百度百科-矩阵的秩

246 评论

相关问答

  • 矩阵的迹毕业论文

    求矩阵A的迹主要用两种方法:迹是所有对角元的和,就是矩阵A的对角线上所有元素的和。迹是所有特征值的和,通过求出矩阵A的所有特征值来求出它的迹。在线性代数中,一个

    linlin0530 6人参与回答 2023-12-10
  • 矩阵的秩论文参考文献

    rank就是指矩阵的秩啊,low-rank matrix可能是指秩比较小的矩阵吧

    c阿c的鲁鲁 7人参与回答 2023-12-11
  • 毕业论文有关矩阵的秩

    矩阵的秩的定义:是其行向量或列向量的极大无关组中包含向量的个数。 能这么定义的根本原因是:矩阵的行秩和列秩相等(证明可利用n+1个n维向量必线性相关) 矩阵的秩

    哆啦Y梦 6人参与回答 2023-12-11
  • 关于矩阵的论文参考文献

    在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。 矩阵

    cindy5056315 6人参与回答 2023-12-11
  • 矩阵多项式的论文参考文献

    数模论文的写作在比赛中可能是你论文质量好坏,得奖与否的最重要的因素。据初步的调查,很多同学在准备比赛时,把自己的主要精力放在阅读往年优秀论文,精通某种软件和算法

    不蓉错失927 6人参与回答 2023-12-11