天文学报日月轨道摄动
天文学报日月轨道摄动
地球同步轨道的摄动主要由太阳光压摄动、大气旋转和日月引力摄动。
太阳光压摄动引起气球卫星轨道倾角增大,平均每天变化约0.0017;
大气旋转引起轨道倾角减小,平均每天变化不到0.0001,但随着高度下降,变化量亦增大,陨落前达0.002。
历书天文学的运动理论和轨道
天体历表是根据天体的运动理论和由观测资料确定的轨道要素来计算的。如果对某些天体,例如对于新发现的天体(彗星或小行星等)的轨道事先一无所知,那就要及时地利用为数不多的观测资料定出其初步的轨道,这项工作就是轨道计算。在此基础上再利用尽可能多的可靠观测资料来不断修正原定的轨道。其一般原理是:根据天体的运动理论和近似的轨道要素计算出天体的理论位置,并与观测资料比较,得出差值,然后利用最小二乘法求出其轨道要素修正值,定出更精确的轨道要素以及同观测有关的其他天文常数,如地球的轨道要素、摄动行星的质量、太阳视差和章动常数等。这项工作就是轨道改进。一个比较著名的实例是:1917年F E 罗斯利用1751~1912年的 9,000多个观测资料改进了纽康的火星运动理论,对火星除半长径以外的其他五个轨道要素和金星质量的参数做了修正,使火星历表的精度大为提高。纽康原来的轨道要素加上F.E.罗斯的改正值,就成为1922年以后各国天文年历计算火星历表所采用的轨道要素。 历书天文学还研究如何从观测资料确定一些最基本的天文常数和如何建立既精确又合理的天文常数系统的问题,例如确定天文单位和大行星质量。天文单位是太阳系的基本量度单位,它过去是利用小行星爱神星冲日、金星凌日或地内行星的观测资料得出的。六十年代以后,随着雷达天文方法和激光技术的发展,可以直接精确测定天文单位。大行星的质量直接关系到太阳、月球和行星历表的精度,通常由分析大行星对另一大行星、小行星、彗星或大行星的卫星的摄动影响来确定其质量。
航天动力学的轨道运动
航天器的质心运动研究,以牛顿力学为基础从航天器受到的作用力着手确定航天器的运动。它可归纳为航天器轨道理论及其应用研究两个方面。 它以天体力学中的轨道摄动理论(见航天器轨道摄动)为基础,用于在已知航天器所受的力的情况下确定航天器轨道运动的问题。轨道理论是轨道设计、轨道测定的基础。轨道摄动理论中将航天器实际运动的轨道分成两个部分。其中一部分是已经完全解出的简化理论轨道。它与精确理论轨道十分接近。简化理论轨道一般取符合二体问题运动规律的开普勒轨道。另一部分是精确理论轨道与简化理论轨道的差,称为轨道摄动。轨道摄动是一个小量,只要解算出轨道摄动,就能精确求出航天器的轨道运动。与天体力学中的情况相似,求解轨道摄动的方法也有两类:一类是数值计算法,天体力学称为特别摄动法;另一类是分析方法,解出近似解析解,天体力学称为普遍摄动法。研究轨道摄动的另一个目的是通过与实测轨道的对比,研究分析轨道摄动的起因,为天体引力场、天体形状、天体周围气体层等研究提供信息。除了轨道摄动法外,直接用航天器的运动方程进行数值积分,也可得到精确的数值结果。降落轨道段轨道研究的重点是航天器在大气层内的高速运动。在制动推力和空气动力作用下,航天器的初始方位、速度方向、重量、外形和姿态运动规律决定了它的降落方式。它可能以弹道、滑翔或跳跃等方式降落在天体表面。
上一篇:国家地理杂志获奖图片
下一篇:不收版面费的学报期刊