1、选题根据自己的需求、专业拟定方向选题,搭建清晰的写作框架。2、文献学习学术文献的检索与阅读方法,筛选出有效文献并根据文献的使用途径进行整理、分类。了解Literature Review 的写作规则,学习如何辩证地结合不同学者的观点。至少要学习4篇目标文献的精读及讲解,知道如何进行文献阅读和引用。3、提案根据已有的思路和框架理清 Proposal 的写作方法,明确研究方法。完成写作后,检查修改,并指引同学如何做下一步的修改。4、会议Proposal 提交后,分析导师的 Feedback ,优化之前的选题内容并且明确后续研究指明方向。5、写作学习写作方法,重点 Introduction 和 Literature review 的写作要领和注意事项。构建研究理念,研究方法,研究策略,研究分析方式,时间维度,数据收集与数据分析等体系。6、建模解析数据分析中所使用公式、模型、及数据的获取方式,学习Methodology 的写作方法。7、写作检查前四部分的论文内容, Discussion , Conclusions 及 Abstracts 的写作方法。即根据之前数据分析的结果阐述论文的结论,并且提出研究的不足点,以及以后的展望。8、检查进行第一次全面检查,重点检查全文的内容、语法和词汇,改善并校对论文的提交格式检查。
你好, 是什么专业的,,细聊
英国留学期间,第一次写布置的论文作业差点挂了,还好找了英国翰思教育,就是论文辅导机构,划重点,辅导机构。老师不仅帮我争取了重新提交的机会,还帮我拿到了高分。他们的客服就是随时在,沟通很方便,直接按照我的要求和情况,给我安排了同专业的BG是G5院校之一的老师,来给我上课,让我理解学校教授想看到怎样的文书。在课堂实践上,也会有各种练笔机会,而且老师还会露一手做示范给我看。比如有次课程就是模拟这个就是我要写的论文,老师动笔前会给我outline的,让我了解文章的大概情况,然后写好了会根据我的意思去修改,写的时候也会征求我的意见,写完了我会好好地读一遍,翰思的老师总是不厌其烦,耐心的和我说好在哪里,以及我要取长补短的到底是哪里。上完一期课程,我后面就能独立完成作业,而且拿到的分数都很可感觉想顺利搞定论文以及想高分的可以直接找翰思。
一,论点明确一篇好的论文最重要的是要点明确,这样可以使整个论文的重点和论点突出,给人耳目一新的感觉,论文的印象分也就高了,再者就是论文的陈述要交代好整篇论文的结构和目的。二,理论支持和批判缺一不可论文要有严格的论点和观点,要有明确的理论支持分析和观点陈述,并且最好是参考文献和个人观点分析相互结合,可以更加明确你的论点和观点。三,举例论证作为英语非第一语言的学生,英语写作上的语法和句式在表达的时候会有很多困难,那么举例可以更好的佐证你的观点,有可以弱化你英文不好的劣势。四,合理安排时间想要在短时间内写出一篇好的论文,前提是你熟练掌握语法句式并且对论文的主题和观点陈述把握十分到位,如果做不到,就要合理安排论文写作时间。当然,万能班长也有专门的论文指导,针对有多篇Essay,Report等论文作业的学生,全面且高校的论文指导。
需要吧 最重要的还是毕业论文
l留学生并不需要经常写论文,但是毕业论文是必须要完成的
通常情况下,国外导师在给论文评分时,主要的关注点是论文思路、创新性、参考文献以及文章细节这4部分,所以留学生们想要提分,也要从这4点下手:1、创新性论文的创新性和选题的有着较为重要的关系,划分越细越具体的选题,更容易做出创新性。要注意的是,留学生在写Dissertation不能盲目追求创新,为了追求价值而走进了“死胡同”。有的留学生为了追求原创度,会选择之前没人做过的领域。这种行为是非常不可取的。我们都知道,想要写出一篇优秀的论文,离不开文献的阅读与引用,没人涉猎的领域首先在论据上就缺少支撑。所以,留学生在选题时要注意,你的选题要和你的专业相契合,有足够的论据做支撑,以及研究有足够的现实意义,符合这3点,那你就为高分论文开了一个好头。2、论文思路一般能做到观点明确、有批判性思考以及论据充分,那留学生就能拿到高分。其中,批判性思维是留学生在写作时的难点之一。主要是因为国内外教育的侧重点有不同,很多留学生习惯针对论文选题进行正面“进攻”,忘记分析“对手”。针对这一点,留学生在写作时可以发散思维,找一些和你选题相左的观点进行分析,并对比点出你的研究有什么优点,针对整个研究领域来说,可以做出怎样的贡献。至于论文结构方面,大家可以在动笔前先列出逻辑列表,将论文的主体划分成几个部分,可以用树杈图的方式标注出每部分论证的重点,分几段,每一段想表达的内容。论据方面就不用多说什么了,就是大量阅读文献,注意文献的质量,选择权威期刊和领域内研究大拿的文章,选择时尽量挑选那些发布时间较新的。3、参考文献参考文献主要分两部分,一部分是正文中的引用,一部分就是最后的参考文献列表,这两部分有多种格式,具体要看学校的规定。其中最容易犯错的就是在正文中引用,很多留学生会因为少标注或是标注错误,导致扣分,严重的还有人被老师怀疑学术不端,如果没办法证明清白的话,还会影响毕业,几年的努力就全白费了。4、文章细节写完论文后留学生不要急着交,要反复多检查几遍,这就是对文章细节的把控。检查的过程其实也就是自己给论文润色的过程。论文写完后可以先查重,根据查重报告修改重复度过高的句子,过程中自己也要检查、修改拼写、语法、格式方面的问题。最后注意句子的叙述,要尽量做到风格统一,少用被动、主动语态以及形容词,做到客观叙述、指代清晰。
第一,选好一个合适的论文题目这一步骤需要同学和导师细心沟通,明确自己的研究方向,研究目标,研究领域,以及研究可行性。这一步非常重要,很多同学想写很多内容,这种过于宽泛的研究方向会让后面研究的开展举步维艰,有的同学绞尽脑汁也想不出研究方向,也会让后续研究难以展开。考而思的论文辅导帮助学生在这一步分析每个研究方向的利弊,帮助学生找到适合自己的研究方向。第二,开展文献研究这一步需要同学们阅读大量的文献。对文献做细致的分析,对文献内容做深度的提炼加工,需要同学学会文章内引用和文章后引用。而这一步很多同学都会头疼无比,也是很多同学论文止步不前的原因,因为他们不会看文献,更不会提取有用信息。考而思的论文辅导帮助同学阅读文献,教授学生提取文献内容的方法。让学生在学术的道路上披荆斩棘,大步向前。第三,方法论的指导无论是使用定性分析方法还是定量分析方法,都需要学生对方法论的哲学思想有一定的了解。这一部分的知识非常系统和专业,需要学生接受专业的指导。而考而思的英国论文辅导课程可以帮助同学系统地学习相关知识。第四,发现和分析结果通过合适的研究方法进行研究后,对结果的深度分析则需要同学具备对问题的深刻理解。这一部分写得出彩能为论文加不少分。这一部分也是学生论文分析的核心。如何在这一部分纠正细节,避免错误,抓住重点,分析精髓,论文课程辅导可以帮助学生了解相关程序,对分析问题不再束手无策。第五,文献如何引用不仅需要阅读文献,整理文献,在文章完成之后有一部分是罗列全文相关的文献,这一部分需要同学们运用专业的文献引用方法。考而思的论文辅导可以帮助同学系统了解文献引用方法,并对学生全文做查重测试,分析文章相似度改进方法。
极限理论是数学分析课程的理论依据,就因为引入极限思想,微积分才有了理论根基,从而可以解决很多初等数学不能解决的实际问题.极限理论贯穿于数学分析课程的始终.因此,教学中让学生深刻理解极限理论对学好整门课程起到至关重要的作用.作者就自己多年教授数学分析课程的经验,谈谈数列极限与函数极限的联系与本质区别.1.关于数列极限数列初等数学中对数列这样定义:按照一定顺序排列的一列数称为数列.数学分教材[1]关于数列的定义:若函数f的定义域是全体正整数集N,则称f:N→R或f(n),n∈N为数列.正因为正整数集的元素可按从小到大的顺序排列,所以数列f(n)也可写作a,a,…a…,或简单地记作{a},其中a是该数列的通项.看得出来,数列就是一正整数集为定义域的函数,即所有数列的定义域都是正整数集.数列的极限的定义定义1设{a}为数列,a为定数.若对任给的正数?藓,总存在正整数N,使得当n>N时,有|a-a|<?藓,则称数列{a}收敛于a,定数a为数列{a}的极限,并记作a=.关于函数极限→∞时函数极限定义2设f为定义[a,+∞)在上的函数,A为定数,若对任给的正数?藓,存在正数M(≥a),使得当x>M时有|f(x)-A|<?藓,则称函数当x→+∞时以A为极限,记作f(x)=A.现设f为定义在U(-∞)或U(∞)上的函数,当x→-∞或x→∞时,若函数值无限地接近某定数A,则称f当x→-∞或x→∞时以A为极限,f(x)=A或f(x)=→x时函数极限定义3(函数极限的?藓-δ定义)设函数f在点x的某个空心邻域U(x;δ′)内有定义,A为定数,若对任给的正数ε,存在正数δ(<δ′),使得当0<|x-x|<δ时有|f(x)-A|<0ε,则称函数f当x→x时以A为极限,记作f(x)=A.类似可定义f(x)=A及f(x)=.数列极限与函数极限的异同及根本原因从以上定义可以看出,数列极限与函数极限有相同点也有不同点,研究二者的方法大同小异,相同点是数列极限与函数极限中当x→+∞时的类型完全相似,因此可以用相同的方法研究.二者的不同点在于,数列极限只有一种类型,就是n→∞时的极限;而函数极限细分有六种类型x→+∞;x→-∞;x→∞;x→x;x→x;x→x的极限,分类的标准是根据的趋向的不同来分类.二者的相同点源自二者都是函数,数列可以认为是特殊情况的函数,任何一个不同的数列都以正整数集为定义域;而通常意义下的函数在数学分析课程中是定义在实数范围的,其定义域可以是实数集也可以是实数集的某个子集.正因为将二者同看成函数的情况下,由于二者的定义域范围不同,导致二者极限类型的不同.数列的定义域是正整数集,那自变量的取值为1、2、3……,自变量的最小取1,因此不可能趋向于-∞,又因为数列各项必须取整数,所以它不可能趋近于某个定数,自变量n只可能有一种趋向于+∞;而通常意义下的函数是在实数范围内的讨论,因此,自变量x既可以趋近于+∞,又可以趋近于-∞;如果自变量x同时趋近于+∞和-∞时函数极限存在,则称x→∞时函数极限存在.同理,因为实数集的稠密性,自变量x会趋近于某个定数x,根据自变量x趋近于x的方向不同又可以分为x点处的左极限和右极限,于是某定点处有三种类型x→x;x→x;x→x函数极限.综上,数列是特殊的函数,正因为数列作为函数的特殊性,使数列极限相对简单并且具有相对理想的性质,收敛数列的所有性质都具有整体性;而收敛函数的所有性质都只能满足局部性质.导致二者性质差别的真正原因也在于二者作为函数定义域的范围不同.笔者认为,还要真正学透极限,一定要从本质上研究导致他们不同的原因,相同的理论完全可以通过类比的方式学习,而学习的重点应该放在二者的不同上,弄懂有什么不同,为什么不同,只有懂得了“为什么”,才能真正学懂相应知识.
大学生毕业论文各个部分的写法如下:
1、主题的写法:
毕业论文只能有一个主题(不能是几块工作拼凑在一起),这个主题要具体到问题的基层(即此问题基本再也无法向更低的层次细分为子问题),而不是问题所属的领域,更不是问题所在的学科,换言之,研究的主题切忌过大。
因为涉及的问题范围太广,很难在一本硕士学位论文中完全研究透彻。通常,硕士学位论文应针对某学科领域中的一个具体问题展开深入的研究,并得出有价值的研究结论。
2、题目的写法:
毕业论文题目应简明扼要地反映论文工作的主要内容,切忌笼统。由于别人要通过你论文题目中的关键词来检索你的论文,所以用语精确是非常重要的。
论文题目应该是对研究对象的精确具体的描述,这种描述一般要在一定程度上体现研究结论,因此,我们的论文题目不仅应告诉读者这本论文研究了什么问题,更要告诉读者这个研究得出的结论。
3、摘要的写法:
毕业论文的摘要,是对论文研究内容的高度概括,其他人会根据摘要检索一篇硕士学位论文,因此摘要应包括:对问题及研究目的的描述、对使用的方法和研究过程进行的简要介绍、对研究结论的简要概括等内容。摘要应具有独立性、自明性,应是一篇完整的论文。
4、引言的写法:
一篇毕业论文的引言,大致包含如下几个部分:问题的提出;选题背景及意义;文献综述;研究方法;论文结构安排。
5、结论的写法:
结论是对论文主要研究结果、论点的提炼与概括,应准确、简明,完整,有条理,使人看后就能全面了解论文的意义、目的和工作内容。
主要阐述自己的创造性工作及所取得的研究成果在本学术领域中的地位、作用和意义。同时,要严格区分自己取得的成果与导师及他人的科研工作成果。
大学毕业论文的选题建议:
1、联系工作实际:
选题要结合我国行政管理实践(特别是自身工作实际),提倡选择应用性较强的课题,特别鼓励结合当前社会实践亟待解决的实际问题进行研究。
建议立足于本地甚至是本单位的工作进行选题。选题时可以考虑选些与自己工作有关的论题,将理论与实践紧密结合起来,使自己的实践工作经验上升为理论,或者以自己通过大学学习所掌握到的理论去分析和解决一些引起实际工作问题。
2、选题适当:
所谓选题要适当,就是指如何掌握好论题的广度与深度。选题要适当包括有两层意思:
(1)一是题目的大小要适当。题目的大小,也就是论题涉及内容的广度。
(2)二题目的难易程度要适当。
3、选题要新意:
所谓要有新意,就是要从自己已经掌握的理论知识出发,在研究前人研究成果的基础上,善于发现新问题,敢于提出前人没有提出过的,或者虽已提出来,但尚未得到定论或者未完全解决的问题。
只要自己的论文观点正确鲜明,材料真实充分,论证深刻有力,也可能填补我国理论界对某些方面研究的空白,或者对以前有关学说的不足进行补充、深化和修正。这样,也就使论文具有新意,具有独创性。
以上内容参考:百度百科-毕业论文
根据自己专业所提出的要求写自己所需要的论文,我是旅游管理专业,我的毕业论文是做一篇线路设计,在做论文的时候要有摘要同时也要附英文的摘要,然后就是题目,清楚的罗列出自己的题目,让自己更有目标的去写自己的论文,知道自己论文的方向,在写论文的过程中,可以参考网上对自己论文有关的文献或者句子,摘抄的时候要转换成自己的需要,最后要对自己所写的论文写小结。
论文的ddl是一个在大学里流行的词汇,它的全称是deadline,就是截止日期的意思,尤指大学里各种待完成的任务。
写论文注意以下几点:
1、低级错误要避开
不少同学在写论文的时候,会常常犯一些低级错误。论文中出现低级错误的话,是会拉低我们论文的水平的,所以大家在写作的时候,一些低级错误最好避开。
2、研究方法的介绍要丰富
大家在撰写毕业论文时,关于研究方法的介绍,大家一定要尽量丰富一点。研究方法的介绍过于简单的话,读者就无法通过这个方法进一步进行检验,也无法清楚了解该方法是否是科学、客观的。
3、图表要规范、美观
在撰写毕业论文的时候,我们还会在里面适当插入一些图表以作为补充说明。关于这些图表其实也是有要求的,图表不仅要规范还要美观。规范、美观的图表能给让留下一个好的印象,毕竟人都是视觉动物。此外,在制作图表的时候,图表中的数据要真实、客观。
根据heine定理,函数极限数列极限是可以转化的:f(x)一>a(x一>xo)的充要条件为对任何以xo为极限的数列xn!xn不等于xo,都有f(xn)一>a(n一>无穷)
毕业设计论文的写法如下:
1、题目的写法
毕业论文题目应简明扼要地反映论文工作的主要内容,切忌笼统。由于别人要通过你论文题目中的关键词来检索你的论文,所以用语精确是非常重要的。论文题目应该是对研究对象的精确具体的描述,这种描述一般要在一定程度上体现研究结论,因此,我们的论文题目不仅应告诉读者这本论文研究了什么问题,更要告诉读者这个研究得出的结论。
2、主题的写法
毕业论文只能有一个主题,这个主题要具体到问题的基层,而不是问题所属的领域,更不是问题所在的学科,换言之,研究的主题切忌过大。
3、引言的写法
一篇毕业论文的引言,大致包含如下几个部分:问题的提出;选题背景及意义;文献综述;研究方法;论文结构安排。
问题的提出:讲清所研究的问题“是什么”。
选题背景及意义:讲清为什么选择这个题目来研究,即阐述该研究对学科发展的贡献、对国计民生的理论与现实意义等。
论文结构安排:介绍本论文的写作结构安排。
研究方法:讲清论文所使用的科学研究方法。
文献综述:对本研究主题范围内的文献进行详尽的综合述评,“述”的同时一定要“评”,指出现有研究成果的不足,讲出自己的改进思路。
4、摘要的写法
摘要应包括:对问题及研究目的的描述、对使用的方法和研究过程进行的简要介绍、对研究结论的简要概括等内容。摘要应具有独立性、自明性,应是一篇完整的论文。
5、结论的写法
结论是对论文主要研究结果、论点的提炼与概括,应准确、简明,完整,有条理,使人看后就能全面了解论文的意义、目的和工作内容。主要阐述自己的创造性工作及所取得的研究成果在本学术领域中的地位、作用和意义。同时,要严格区分自己取得的成果与导师及他人的科研工作成果。
写好一篇毕业设计论文,需要注意以下几点:1. 确定主题和范围:在撰写毕业设计论文前,需要明确自己的研究主题和范围,并确定研究目的和研究方法。这有助于论文的结构和内容的统一性。2. 搜集资料和文献:在撰写毕业设计论文前,需要进行广泛的资料和文献搜集,并仔细阅读、筛选和整理文献,以便为论文提供充分的支持和证据。3. 制定论文大纲:在撰写毕业设计论文前,需要制定论文大纲,包括各章节的标题、内容和结构等,以便为论文的撰写提供指导和框架。4. 语言表达清晰:在撰写毕业设计论文时,需要使用准确、简洁、清晰的语言,避免使用不必要的术语和复杂的句子,以便读者能够理解和接受论文的内容。5. 结构合理:毕业设计论文的结构应该合理,包括封面、摘要、目录、引言、正文、结论、参考文献等部分,其中每一部分的内容应该清晰明了、逻辑严谨。6. 数据分析准确:毕业设计论文需要进行数据分析和实验结果的呈现,这部分内容应该准确、详细、可重现,并且需要使用合适的图表和数据处理方法。7. 反复修改和润色:在撰写毕业设计论文后,需要反复修改和润色,以保证论文的语言表达和结构完整性,避免出现拼写错误、语法错误等问题。总之,写好一篇毕业设计论文需要认真准备和充分规划,注重语言表达和结构合理,同时需要进行仔细的数据分析和实验结果呈现,以便为论文提供充分的支持和证据。
生命无极限生命本是一泗清泉,只有勇于拼搏的人才能尝出它的甘洌。在奥运场上,四年一次的舞台,给了他们生命的展示。如果说只有冠军才能有王者的风韵。那么,这变是人类史上最大的遗憾。多少年来,人们为着同一个目标努力着。可是,金牌,只有一个,然而想拥有它的人,却有一群。但在我的心里,登上奥运战场,他们,便是王者。也许为了这最后的胜利,他们付出了毕生的努力,他们为了成功,牺牲了最动人的年华。我国的竞走运动员,为了奥运,离开了她仅4个月大的女儿。墙上多少个"正"字才能换回与女儿的相见一面。那是一种穿心的痛,作为一个母亲她将自己献给了体育。面对窗外出升的新月,却只能孤独地想象,我的亲人在哪儿,他们是否也在念挂着我。可是,为了奥运,我要拼搏,即使是最后一名,跑道上也要留有我的身影。留想奥运,那是一种拼搏的精神。 生命本是一米阳光,只有把握住机会的人才能体会它的灿烂。最后一枪,是扣人心弦的,也就是这最后一枪,改变了人一生的命运,最后一枪,使全世界知道了杜丽的名字。在最后一枪之前,还有0。6环的差距。可是对手没有把握住。杜丽,你赢了!奥运,是懂得怎样把握住机会的竞技场。 生命本是那坚硬的石头上的一颗小水珠,只有永不放弃的人才能拥有水滴石穿之时。21:23,在前三局中国以1:2败与俄罗斯,这是至关重要的一局,如果输了,中国只能跟金牌擦身而过。许多人不想看到女排一败涂地的结局,纷纷转换了频道。然而,上帝在创造女排姑娘之前,为她们安装了一颗永不服输的心。就是这颗坚韧的心,陪着女排姑娘们度过了最艰难的一关。窗外发出一阵激烈的掌声。我知道,我们一定是赢了。是她们,顶着巨大的压力,在大比分落后的情况下,挽回了致命的一局。我注意到了这样一个镜头:在拦网过程中,李婷摔倒,她用双拳向地面使劲地一锤,是啊,每一分对于她们来说是多么重要。李婷站了起来,重新开始了她的征途。当时,我是用一颗感恩的心来看待这些姑娘的。感恩,感谢你们为祖国添加了本届奥运会第一枚团体金牌;感恩,感谢教练的微笑,给了她们莫大的支持;感恩,感谢上苍赐予她们一颗永不言弃的心。今天,是感恩节。是奥运健儿为我们带来了胜利的曙光,使自豪填满我们的胸膛。 在人生的旅途中,有太多的也许,也许曾经得到,也许就这样错过。蓦然会首中,依旧不变的,是一颗无悔的心。他们选择了体育,从此就等待希望。他们没有后悔,哪怕放弃拥有。他们创造了太多的奇迹,那是生命的真谛,那是生命的根源:生命无极限!
(一)确定论文提要,再加进材料,形成全文的概要论文提要是内容提纲的雏型。一般书、教学参考书都有反映全书内容的提要,以便读者一翻提要就知道书的大概内容。我们写论文也需要先写出论文提要。在执笔前把论文的题目和大标题、小标题列出来,再把选用的材料插进去,就形成了论文内容的提要。(二)原稿纸页数的分配写好毕业论文的提要之后,要根据论文的内容考虑篇幅的长短,文章的各个部分,大体上要写多少字。如计划写20页原稿纸(每页300字)的论文,考虑序论用1页,本论用17页,结论用1—2页。本论部分再进行分配,如本论共有四项,可以第一项3—4页,第二项用4—5页,第三项3—4页,第四项6—7页。有这样的分配,便于资料的配备和安排,写作能更有计划。毕业论文的长短一般规定为5000—6000字,因为过短,问题很难讲透,而作为毕业论文也不宜过长,这是一般大专、本科学生的理论基础、实践经验所决定的。(三)编写提纲论文提纲可分为简单提纲和详细提纲两种。简单提纲是高度概括的,只提示论文的要点,如何展开则不涉及。这种提纲虽然简单,但由于它是经过深思熟虑构成的,写作时能顺利进行。没有这种准备,边想边写很难顺利地写下去。编写要点编写毕业论文提纲有两种方法:一、标题式写法。即用简要的文字写成标题,把这部分的内容概括出来。这种写法简明扼要,一目了然,但只有作者自己明白。毕业论文提纲一般不能采用这种方法编写。二、句子式写法。即以一个能表达完整意思的句子形式把该部分内容概括出来。这种写法具体而明确,别人看了也能明了,但费时费力。毕业论文的提纲编写要交与指导教师阅读,所以,要求采用这种编写方法。详细提纲举例详细提纲,是把论文的主要论点和展开部分较为详细地列出来。如果在写作之前准备了详细提纲,那么,执笔时就能更顺利。下面仍以《关于培育和完善建筑劳动力市场的思考》为例,介绍详细提纲的写法:上面所说的简单提纲和详细提纲都是论文的骨架和要点,选择哪一种,要根据作者的需要。如果考虑周到,调查详细,用简单提纲问题不是很大;但如果考虑粗疏,调查不周,则必须用详细提纲,否则,很难写出合格的毕业论文。总之,在动手撰写毕业论文之前拟好提纲,写起来就会方便得多。
极限思想是高中数学中的一种重要的数学思想,利用极限思想使人们能够从有限中认识无限,从近似中认识精确,从量变中认识质变成为可能。高中数学教材中有多处内容渗透了极限的思想和方法,如“球的体积和表面积”、“双曲线的渐近线”等,但是极限思想在实际教学中没有得到普遍的认可和推广,学生对这种思想方法相当陌生。对于某些数学问题,如果我们能够灵活运用极限思想求解,往往可以避开一些抽象复杂的运算,降低解题难度,还可以优化解题思路,收到事半功倍的效果。下面是笔者尝试将极限思想和方法渗透融合在解题教学中,实现方法与内容的整合。一、寻求极限位置,实现估算与精算的结合例1 过抛物线 的焦点F作一直线交抛物线于P、Q两点,若线段PF与QF的长分别是p、q,则 等于( )。 (A)2a (B) (C) 4a (D) 图1解析:本题是有关不变性的问题,常规解法是探求p、q、a的关系,过程繁琐,且计算较复杂。若能充分认识到变与不变的辨证关系,利用运动和变化的观点,借助于极限思想即取PQ的极限位置可使问题变得简便易行,如图1所示,将直线PQ绕点F顺时针方向旋转到与y轴重合,此时Q与O重合,点P运动到无穷远处,虽不能再称它为抛物线的弦了,它是弦的一种极限情形,因为 ,而 ,所以 ,故答案选C。针对客观选择题题型的特点,这种解法体现出思维的灵活性和敏捷性,凸显了试题的选拔功能。【评注】将精算与估算相结合,是一种重要的数学能力,有利于从不同层面对理性思维能力进行全面而又灵活的考查。因此,这类数学试题给高中数学教与学的方向以启示,注重多元联系表示,拓宽思维,提高思维含量。二、考查极限图形,简化计算例2 在正n棱锥中,相邻两侧面所成的二面角的取值范围是( )。 (A) (B) (C) (D) 解析:如图2所示,设正n棱锥为 ,由于n多变,所以底面正n边形、侧面出现不确定状态,这样导致直接分析求解将是繁难,甚至是“到而不达”的,若另辟蹊径,采用极限法,则解法将是简捷、易行的,其计算量得到极大的简化。本例中底面正n边形固定,而棱锥的高不定,故可将顶点S看作是运动变化的,设相邻两侧面所成的二面角的平面角为 。当点S向下运动无限趋近底面正n边形的中心这个极限位置时, 趋于平角 ;当点S向上运动趋于无穷远时,侧棱将无限趋于与底面垂直,即正n棱锥趋近于正n棱柱,此时 无限趋于底面正n边形的内角 ,故二面角的取值范围是: ,从而答案选A。【评注】“化静为动,以动制静”,利用运动和变化的观点,着眼于问题的极限状态,摈弃了繁琐的数学运算,使得所研究问题更加直观、明朗。因此,根据问题的不同条件和特点,合理选择运算途径是提高运算能力的关键,而灵活地利用极限思想就成为减少运算量的一条重要途径。三、分析极限状态,探索解题思路例3 已知抛物线方程为 。求证:在x轴正方向上必存在一点M,使得对于抛物线上任意一条过M的弦PQ均有 为定值。分析:假设点M确实存在,因为过点M的任意一条弦PQ均有 为定值,因此对过点M的一条特殊弦——垂直于x轴的弦 也应该有 为定值。如图3所示,设 ,则 ,但是仅凭此式还看不出点M到底是哪个定点。下面再考查弦的一个极限情形——x轴的正半轴,它过点M,它的一个端点是原点O,另一个端点可以看成是无穷远处的极限点 (假想的点),它是弦的一种极限情形,显然有 ,所以 ,它也应该是定值,且 ,由此可得 ,于是可以猜想定点M(p,0),下证过点M(p,0)的任一弦PQ均有 (定值)。 图3证明:设过点M(p,0)的直线参数方程为 ,代入抛物线方程得 ,设此方程的两根为 ,则 ,而 的几何意义分别表示MP及MQ的值。所以 。因此点M(p,0)是满足题意的点。【评注】通过分解有关对象在运动变化过程中的极限状态,提取信息、信息整合,从而寻求到合理的解决问题的途径,降低了解题难度,优化了解题过程,有效激活了创新思维,凸显了极限思想在解题中的独特功能及应用的广泛性。四、巧取极限,实现无限与有限的统一例4 设数列 满足 (1)当 时,求 ,并由此猜想出 的一个通项公式; (2)当 时,证明对所有的 ,有① ;② 。解析:本题是数列与不等式的综合题,是考查猜想、归纳、迭代、放缩推理及分析问题和解决问题能力的一道优秀试题。(1)及(2)①入口宽,也易解决。但是(2)②的放缩难度较大,拉开了档次,体现了较好的区分度。事实上,(2)①的结论给解答(2)②有明确的启示。因为由 可以推导出 ( ),运用这个不等式来证明(2)②,思路最为清晰、快捷。这种要求,是考查考生进入高校继续学习的潜能所必须的。(1) (略)。(2)①用数学归纳法证明(略)。②由(2)①可知 ,即 。 于是 。 。【评注】本例利用了高等数学中的级数理论:正项级数 的前n项和有上界,故级数 收敛,但其收敛速度不大于 的收敛速度( )。其实从初等数学的观点也很容易理解:若单调递增数列 存在极限,则 。通过无限与有限的统一,实现了对不等式的放缩。利用极限思想,把问题放置于极限状态,即活跃了思维,又提高了分析、解决问题的能力。因此,教师要有意识地强化用极限思想解题的意识,并在不断应用它解决问题的过程中,让学生真正体会到“提高观点,降低难度,减轻负担”的含义。自己去瞧瞧吧,,,,,我只能帮到这里了。。。。。
极限理论是数学分析课程的理论依据,就因为引入极限思想,微积分才有了理论根基,从而可以解决很多初等数学不能解决的实际问题.极限理论贯穿于数学分析课程的始终.因此,教学中让学生深刻理解极限理论对学好整门课程起到至关重要的作用.作者就自己多年教授数学分析课程的经验,谈谈数列极限与函数极限的联系与本质区别.1.关于数列极限数列初等数学中对数列这样定义:按照一定顺序排列的一列数称为数列.数学分教材[1]关于数列的定义:若函数f的定义域是全体正整数集N,则称f:N→R或f(n),n∈N为数列.正因为正整数集的元素可按从小到大的顺序排列,所以数列f(n)也可写作a,a,…a…,或简单地记作{a},其中a是该数列的通项.看得出来,数列就是一正整数集为定义域的函数,即所有数列的定义域都是正整数集.数列的极限的定义定义1设{a}为数列,a为定数.若对任给的正数?藓,总存在正整数N,使得当n>N时,有|a-a|<?藓,则称数列{a}收敛于a,定数a为数列{a}的极限,并记作a=.关于函数极限→∞时函数极限定义2设f为定义[a,+∞)在上的函数,A为定数,若对任给的正数?藓,存在正数M(≥a),使得当x>M时有|f(x)-A|<?藓,则称函数当x→+∞时以A为极限,记作f(x)=A.现设f为定义在U(-∞)或U(∞)上的函数,当x→-∞或x→∞时,若函数值无限地接近某定数A,则称f当x→-∞或x→∞时以A为极限,f(x)=A或f(x)=→x时函数极限定义3(函数极限的?藓-δ定义)设函数f在点x的某个空心邻域U(x;δ′)内有定义,A为定数,若对任给的正数ε,存在正数δ(<δ′),使得当0<|x-x|<δ时有|f(x)-A|<0ε,则称函数f当x→x时以A为极限,记作f(x)=A.类似可定义f(x)=A及f(x)=.数列极限与函数极限的异同及根本原因从以上定义可以看出,数列极限与函数极限有相同点也有不同点,研究二者的方法大同小异,相同点是数列极限与函数极限中当x→+∞时的类型完全相似,因此可以用相同的方法研究.二者的不同点在于,数列极限只有一种类型,就是n→∞时的极限;而函数极限细分有六种类型x→+∞;x→-∞;x→∞;x→x;x→x;x→x的极限,分类的标准是根据的趋向的不同来分类.二者的相同点源自二者都是函数,数列可以认为是特殊情况的函数,任何一个不同的数列都以正整数集为定义域;而通常意义下的函数在数学分析课程中是定义在实数范围的,其定义域可以是实数集也可以是实数集的某个子集.正因为将二者同看成函数的情况下,由于二者的定义域范围不同,导致二者极限类型的不同.数列的定义域是正整数集,那自变量的取值为1、2、3……,自变量的最小取1,因此不可能趋向于-∞,又因为数列各项必须取整数,所以它不可能趋近于某个定数,自变量n只可能有一种趋向于+∞;而通常意义下的函数是在实数范围内的讨论,因此,自变量x既可以趋近于+∞,又可以趋近于-∞;如果自变量x同时趋近于+∞和-∞时函数极限存在,则称x→∞时函数极限存在.同理,因为实数集的稠密性,自变量x会趋近于某个定数x,根据自变量x趋近于x的方向不同又可以分为x点处的左极限和右极限,于是某定点处有三种类型x→x;x→x;x→x函数极限.综上,数列是特殊的函数,正因为数列作为函数的特殊性,使数列极限相对简单并且具有相对理想的性质,收敛数列的所有性质都具有整体性;而收敛函数的所有性质都只能满足局部性质.导致二者性质差别的真正原因也在于二者作为函数定义域的范围不同.笔者认为,还要真正学透极限,一定要从本质上研究导致他们不同的原因,相同的理论完全可以通过类比的方式学习,而学习的重点应该放在二者的不同上,弄懂有什么不同,为什么不同,只有懂得了“为什么”,才能真正学懂相应知识.
极限思想作为一种数学思想,由远古的思想萌芽,到现在完整的极限理论,其漫长曲折的演变历程布满了众多数学家们的勤奋、智慧、严谨认真、孜孜以求的奋斗足迹。极限思想的演变历程,是数千年来人类认识世界和改造世界的整个过程的一个侧面反应,是人类追求真理、追求理想,始终不渝地求实、创新的生动写照。 极限思想的产生与完善是社会实践的需要,它的产生为数学的发展增加了新的动力,成为了近代数学思想和方法的基础和出发点。极限思想是微积分理论的基础,而微积分与经济学、物理学、机械自动化等与生活息息相关的学科是密不可分的。尤其是对于经济学来说,是一个透过现象看本质的必不可少的工具,经济学的核心词语“边际”便是一个将导数经济化的概念。只有结合微积分等数学知识,才能使经济学从一个仅仅对表面现象进行肤浅的常识推理、流于表面化的学科,变为一个用科学的方法进行数理分析、再结合各社会学科的丰富知识,从而分析出深层次的、更具有广泛应用性的基本结论的学科。 其他学科也是如此,极限思想的应用无处不在,理解掌握并合理应用极限要思想,可以让我们在解决实际问题的过程中,能较快发现解决问题的方法,提高实际效果。